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Preface 

Reliability has a plain lexical meaning, which the engineers have modified 
and absorbed into their technical jargon. Lexically, that which is 'reliable' 
can be depended upon confidently. Applying this to machines or systems, 
they are 'reliable' (still avoiding technical jargon) if one is confident that 
they will perform their specified tasks as intended. The intuitive concept of 
robust reli1l.bility is that a system is reliable if it is robust with respect to 
uncertainty. In other words, a system is reliable if it can tolerate a large 
amount of uncertainty before failure can occur. Conversely, a system which 
is fragile with respect to uncertainty, which can tolerate only a small amount 
of uncertainty before failure becomes possible, is unreliable. 

The analysis of reliability grapples with uncertainty. Reliability analy
sis begins by identifying the sources of uncertainty - loads, failure condi
tions, material or geometrical properties and so on - and then proceeds to 
the quantitative characterization of these uncertainties with a mathematical 
modeL Various types of models of uncertainty are available - probabilistic, 
fuzzy, convex, etc. 

In classical technical j argon, a system is reliable if the probability offailure 
is acceptably low. But probability is not the only viable option for quantify
ing uncertainty in reliability analysis, nor is it even always the most desirable 
mathematical modeL In many complicated and important technological situ
ations, the inability to verify the details of a probabilistic model may lead to 
significant inaccuracy in the reliability analysis. The idea of robust reliability 
developed here is an alternative to classical probabilistic reliability. 

The quantification of reliability developed in this book is based on evalu
ation of the robustness of the system to uncertainties. The relation between 
noise-robustness and reliability appears widely in quality engineering, as ev
idenced for example by Taguchi's comment [94, p.3]: 

The broad purpose of the overall quality system is to produce a 
product that is robust [italics in the original] with respect to all 
noise factors. Robustness implies that the product's functional 
characteristics are not sensitive to variation caused by noise fac
tors. 

In our formulation, a system has high reliability when it is robust with respect 
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to uncertainties. It has low reliability when even small amounts of uncertainty 
entail the· possibility of failure. 

The mathematical formulation ohobust reliability stems from the connec
tion between convexity and uncertainty, as developed in the theory of convex 
models. Robust reliability is an application of convex modelling, combined 
with the idea of robustness-t<runcertaiIity as a measure of reliability. The 
point of contact is the recognition of the expansion parameter of a convex 
model as the uncertainty parameter whose limiting magnitude, at failure of 
the system, assesses the uncertainty-robustness of the system. 

Convex-set-models of uncertainty, rather than probabilistic models, have 
a quite diversified history in the engineering literature of the past few decades, 
representing complex uncertainties in a range of technological applications. 
We mention here just a few examples. Drenick [33, 34] and Shinozuka [84] 
describe uncertain seismic loads on civil structures by defining convex sets of 
possible input functions, with no probability measures defined on these sets. 
Schweppe [80] and Witsenhausen [104, 105] describe estimation and control 
algorithms for linear dynamic systems based on sets of inputs. Schweppe 
[81] develops inference and decision rules based on assuming that the uncer
tain phenomenon can be quantified in such a way as to be bounded by an 
ellipsoid, again with no probability function involved. Ben-Haim [6] devel
ops a method for optimal design of material assay systems based on convex 
sets of uncertain spatial distributions of the analyte materiaL Ben-Haim and 
Elishakoff [20] describe a range of analysis and design problems in applied 
mechanics based on defining convex sets of uncertain input functions or un
certain geometrical imperfections. Lindberg [61, 62] and Ben-Haim [11] use 
the convex modelling method to study radial pulse buckling of geometrically 
imperfect thin-walled shells. Elishakoff and Zhu [38] use convex models to 
represent uncertainties in the acoustic excitation of structures. Natke and 
Soong [73] study the topological optimization of mechanical structures with 
convex model representation of uncertain dynamic loads on the structure. 

The modern theory of random vibration of structures has developed over 
the past few decades in parallel to, and quite independently of, convex models 
of uncertainty. Much current reliability theory for mechanical systems and 
structures is based on the probabilistic theory of vibrations. A plethora of 
excellent monographs and textbooks· are devoted to random vibrations, and 
many discuss implications for reliability. However, the systematic inclusion of 
probabilistic reliability in university programs in mechanical, civil, aerospace 
and manufacturing engineering has not followed the surge of books on random 
vibrations. The reasons for this are undoubtedly varied, and any author on 
non-probabilistic reliability who offers an explanation is inviting unmitigated 
criticism. Nonetheless, one factor underlying the reticence of engineering 
curricula in the area of probabilistic reliability is the problem of applicability. 
In many practical situations one lacks the information needed to verify the 
probabilistic models upon which probabilistic reliability analysis is based. 
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This is discussed in chapter 7 and elsewhere [14, 16,20]' A major aim of this 
book is to develop a methodology for reliability analysis which is particularly 
suited to the type of partial information characteristic of mechanical systems 
and structures. 

That reliability has not widely reached university curricula in mechanical 
sciences is no reflection on the practical importance of the subject. 'What has 
happened in many institutions is that the academic responsibility for sub
jects such as reliability, quality control, monitoring and fault detection, has 
been transferred from the technological departments to departments of indus
trial management or business administration. These subjects are important 
in managerial training, but will inevitably suffer from lack of technologi
cal expertise. When a department within the domain of mechanical sciences 
teaches reliability, it can responsibly address the technical questions of design 
and analysis of reliable systems. These subjects are essential complements 
to the generic management approach to reliability which is accessible to non
engineering students. The present book is directed to engineering students, 
and provides an implementable application of their technological training. 

The main emphasis in this book on reliability in mechanical science is on 
mechanical devices and structures. That is, vibrating solid constructions sub
ject to external loads and internal imperfections, such as aerospace structures, 
buildings, bridges, machine tools, and mechanical devices of all sorts. In ad
dition, the reliability analysis of fluid flow systems such as turbo-machinery, 
of heat-transfer devices such as cooling fins, and of manufacturing processes 
such as extrusion and milling, are explored in examples and homework prob
lems. 

• 
The literature on convex modelling is technical and specialized. The book 

before you is the first which deals with an application of convex models on 
a level accessible to students and practitioners of engineering who are not 
research specialists. Designed as an upper-level undergraduate or first-year 
graduate text on robust reliability of mechanical systems, this book presumes 
a basic knowledge of strength of materials and vibration dynamics, linear 
algebra and integral and differential calculus. Chapters 7 and 8 also assume 
familiarity with the basic concepts of probability. The aim of the book is 
to give the student or engineer a working knowledge of robust reliability, 
which will enable him to analyze the reliability of mechanical systems. Each 
chapter is introduced with a brief conceptual survey of the main ideas, which 
are then developed through examples. Problems at the end of each chapter 
give the student the opportunity to strengthen and extend his understanding. 
Problems marked with an double dagger (:j:) are more difficult or open-ended. 

The book is divided into 9 chapters. 
Chapter 1 is a brief qualitative preview of the idea of robust reliability. 

We discuss some practical examples, without going into the mathematical 
tools of reliability analysis. 
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Representation of uncertainty by convex models, rather than by proba
bility density functions, provides the mathematical basis of robust reliability. 
Selected geometrical and algebraic properties of convex models are summa
rized in rhapter 2. With the exception of chapters 7 and 8, probabilistic ideas 
are not employed in this book. 

Chapters 3 and 4 constitute the heart of our presentation of robust relia
bility. In these chapters we develop the method of robust reliability based on 
convex models, first with static and then with dynamic systems. Subsequent 
chapters address various related subjects, many of which are analogous to 
concepts arising in the classical probabilistic theory of reliability. 

Chapter 5 deals with fault diagnosis, system identification and reliabil
ity testing. In the context of robust reliability this means that we seek to 
identify the system and associated uncertainties, in order to determine if the 
performance will be robust with respect to the estimated degree of uncer
tainty. In considering fault diagnosis, we emph.asize assessment of the robust 
reliability of the diagnostic algorithm itself. Since the full range of tools of 
parameter estimation and system identification are beyond the scope of this 
book, we develop only those methods which are inherent in the analysis of 
robust reliability with convex models of uncertainty. 

Robust reliability, as developed in the previous chapters, is a property of 
the mechanical system and its operating environment. However, the same 
analysis can be applied to evaluating both the reliability of mathematical 
models of systems, and the robustness of design or operational decisions based 
on these models. Chapter 6 introduces the analysis of robust reliability of 
mathematical models of mechanical systems. 

While this book does not develop a probabilistic theory of reliability, 
we do study the relation between probabilistic and robust reliability from 
various points of view. In chapter 7 we develop the idea that uncertainty 
and probability are not synonymous; other non-probabilistic mathematical 
models can be used to quantify the phenomena of uncertainty. Following this, 
we discuss some limitations of probabilistic theory for reliability analysis. 

Despite the considerations discussed in chapter 7, there are situations in 
which verified probabilistic models are available to the mechanical designer 
or analyst. The stochastic Poisson process is one case in point. In some 
situations, information about the distribution of discrete events in time or 
space can be confidently modelled statistically using the Poisson distribution. 
In chapter 8 we develop a hybrid robust-probabilistic analysis of reliability. 

Chapter 9 concludes the book with a brief summary and discussion of 
some speculative aspects of reliability. Most importantly, we consider the 
problem of "calibrating" a reliability analysis, and establishing subjective 
interpretations of a quantitative measure of reliability. 
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''The writing of books", said Solomon,l "has no end", but also their 
beginnings are often indiscernible, rising unsuspectedly from innumerable 
chats, discussions, arguments and correspondences. And so it was with this 
book. I cannot hope to trace the sources of the thoughts which come together 
here. I can however, with great pleasure, acknowledge a few of my friends and 
colleagues who, by untiring argument, relieved me of some of my worst ideas 
and greatest mistakes: Prof. Gerard Lallement and Dr. Scott Cogan from 
Universite de Franche-Comte in Besan~on, France, as well as Prof. H.G. Natke 
and Dr. Uwe Prells from Universitat Hannover in Germany. The errors which, 
remain are entirely my own. 

In addition I am both proud and happy to acknowledge the unsurpassed 
atmosphere of free thought and open enquiry at the Technion-Israel Insti
tute of Technology. 

Last but not least, thousands of unneeded words have been avoided by 
the excellent graphic art of Ms. Ariela Rozen. 1 am SUl"e the reader will join 
me in expressing heartfelt thanks for her efforts~ 

1 Kohelet (Ecclesiastes) 12:12. 
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Chapter 1 

Preview of Robust Reliability 

Technological systems are designed to perform well-defined tasks. However, 
these systems and their environments are often inordinately complex, and 
the designer invariably suffers from incomplete knowledge of the properties 
of the system and its environmental conditions. One aim ofreliability analysis 
and design is to enhance the robustness of the system to the uncertainties 
inherent in limited information. A system is reliable if it is robust with 
respect to these uncertainties. In other words, a system is reliable if it will 
perform satisfactorily in the presence of large uncertainties. On the other 
hand, a system is unreliable if it can fail due to even small deviations from 
nominal circumstances. 

In this book we will develop the tools of robust reliability analysis. This 
involves a modicum of mathematics which, though elementary, might be 
unfamiliar to the reader. We defer the mathematics, however, to subsequent 
chapters. In this chapter we will discuss several simple qualitative examples 
of robust reliability, without any mathematics. This preview will equip the 
reader with an intuitive feeling for the subject, and prepare him for the 
quantitative work ahead. 

The analysis of the reliability of a mechanical system will invariably em
ploy three components: (1) a model of the mechanical properties and physical 
laws which govern the system, (2) conditions for failure of the system, and 
(3) a model of the uncertainties which accompany the system. These uncer
tainties may be in the operational environment as well as in the mechanical 
model and failure criteria. The reliability is assessed as the greatest amount 
of uncertainty consistent with successful operation of the system. The uncer
tainty is represented with convex models, whicn are discussed in chapter 2, 
so for the duration of this preview chapter we will be somewhat vague about 
the "uncertainty parameters" which measures the "amount" of uncertainty. 
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Our aim is to get a feel for robust reliability analysis, without worrying about 
how the analysis is actually accomplished. 

1.1 Flexible Solar Panels 

Many contemporary satellites carry panels of solar collectors borne by light
weight flexible truss structures. These panels deploy in space by folding or 
snapping open. Subsequently, they must maintain a stable orientation with 
respect to the body of the satellite. 

A possible cause of mechanical failure of the solar panel is the emergence of 
large-amplitude vibrations. The truss could suffer damage or even complete 
destruction if these vibrations exceed specific limits. These vibrations result 
from dynamical coupling of the truss to the satellite body, which performs 
gradual maneuvers and also displays mechanical viQ.rations. 

Quite a lot may be known about the forces on the truss resulting from 
planned satellite maneuvers. Speed and acceleration schedules for standard 
maneuverS may be known. There may also be information about the mechan
ical vibrations of the satellite body. The frequency range of these vibrations 
as· well as something about their magnitudes may be known from ground 
tests. However, there nonetheless remains considerable uncertainty about 
the precise waveforms of these complicated vibrational excitatiom:. 

A further important uncertainty relevant to the solar truss is the imprecise 
knowledge of the mechanical properties of the truss itself. In particular, 
damping and stiffness properties of the joints and beam-elements may be 
imperfectly known. 

Failure-prevention by suppression of vibrations in the truss must be achie
ved by passive damping and/or active feedback control. In both cases, the 
task is complicated by the lack of information about the excitations and 
about the truss itself. 

We have now described in qualitative terms the three components essen
tial for a reliability analysis: the mechanical properties of the system, the 
conditions for failure, and the uncertainties which accompany the system. 
The system is reliable if it is robust with respect to the uncertainties. The 
reliability is measured by the maximum amount of uncertainty which is con
sistent with successful performance of the intended mission of the system. 

In reliability analysis we attempt to identify those factors which control 
the robustness to uncertainty. This analysis has immediate design implica
tions, by suggesting design decisions which enhance the reliability. Speaking 
a bit more formally, we will identify an "uncertainty parameter" C\' which 
quantifies the amount of uncertainty. (Sometimes there is more than one un
certainty parameter). The crux of the reliability analysis is the determination 
of the greatest value of C\' which is consistent with no-failure. The maximum 
is denoted Ct, and is a function of the properties of the system, in particular, 
it depends on the design variables which are available for modification. The 
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design values are chosen to maximize a: to make the system resistent to 
uncertainty to the greatest possible extent. 

1.2 Quality Control of Thin Shells 

Thin-walled shells are widely used structural elements, and display favor
able weight-to-strength ratios. However, the strength may be drastically 
diminished by even small geometrical imperfections in the shape of the shelL 
Geometrical imperfections are unavoidable in the manufacturing process, so 
real shells will deviate in an unknown manner from the ideal design shape. 
The disparity between real and ideal shell is inevitable, but its magnitude 
is unknown, and this information gap between design and implementation 
is the starting point for robust reliability analysis. The central question is: 
how large an uncertainty in the shell shape can be. tolerated? A reliable 
shell-design will not fail under load even with large geometrical uncertainty. 
An unreliable design can fail even with minute shape imperfections. 

In this example we meet a confluence of reliability analysis and quality 
control. From the quality-control point of view, the maximum acceptable 
geometric uncertainty in the shell is precisely the radial tolerance to which 
the shell should be manufactured. In other words, the output ofthe reliability 
analysis (the greatest tolerable amount of uncertainty) is the input to the 
quality control (the radial tolerance). Furthermore, at the reliability stage 
we can inquire about the spatial variation of the acceptable uncertainty over 
the surface of the shell. In this way we obtain a radial tolerance which varies 
from point to point on the shell surface. 

We have considered only the amplitude of geometrical imperfections, but 
we can also consider the area subtended by an imperfection. Again, the relia
bility analysis will indicate the maximum acceptable area of an imperfection. 
Both the amplitude and the area of the geometric imperfection influence the 
performance of the shell. As one aspect of the uncertainty is allowed to 
increase the other must be constrained if one wishes to maintain the shell 
strength. This has implications for inspection and quality-certification, since 
it indicates the measurement sensitivity and spatial sampling rate required 
for safety certification. 

In this example we have two uncertainty parameters: one for the ampli
tude of the geometrical imperfection and one for its area. For a fixed area Q'ar 

of imperfection, let aam(Q'ar) denote the greatest acceptable imperfection am
plitude. We would expect that an imperfection which subtends a small area 
can a.chieve greater amplitude without allowing failure, than an imperfection 
of large area. In other words, aam versus Q'ar will usually be a decreasing 
curve, as in fig. 1.1. This "reliability curve" divides the plane into a "safe" 
and an "unsafe" region. Any point (Q'am, Q'ar) below the curve corresponds 
to acceptable magnitudes of uncertainty, both in area and amplitude. Any 
point above the curve represents unacceptable uncertainty, and entails the 
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Figure 1.1: Schematic reliability curve for geometric imperfections of shells. 

possibility of failure of the shell under design loads. 

1.3 Fatigue Failure and Reliability 

Solid materials subject to low-amplitude repetitive loading ultimately fail due 
to fatigue cracking. This phenomenon of 'low-cycle fatigue' has been exten
sively studied in the laboratory environment with single-frequency harmonic 
load cycles applied to small test pieces. The standard laboratory assessment 
of fatigue lifetime of a material is the S-N curve: the amplitude S of the 
harmonic load versus the number N of cycles to failure. This curve depends 
on the choice of material and on the mean load level. 

For a solid structure excited by a single-frequency harmonic load, one 
could calculate the number of cycles to fatigue failure, based on a model 
of the structural vibration dynamics and the S-N curves of the material 
from which the structure is made. In practice however load cycles are hardly 
ever composed of only a single frequency. Rather, realistic load histories are 
complicated and variable, and the S-N -calculation is likely to be inaccurate. 
Extensive evidence indicates that the net damage from a sequence of high
and low-amplitude load cycles is quite sensitive to the order in which these 
cycles are applied. 

The reliability questions which arise are: how sensitive is .the structure to 
load;-uncertainty? What design properties of the structure are dominant in 
determining this sensitivity? What classes of uncertain loads are particularly 
pernicious in reducing the lifetime? The robust-reliability approach to these 
questions is to determine the maximum tolerable uncertainty, a: the greatest 
value of the load uncertainty parameter for which the structure will not fail 
earlier than a specified time. The structure is reliable is a is large, while if 
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ii is small then the structure is liable to fail early in life if small deviations 
of the load history occur. ii depends on the properties of the system and the 
class of uncertain inputs. In comparing two alternative structures or designs, 
their ii-vaiues express their comparative reliability. 

1.4 Plastic Extrusion Manufacturing 

In most of our work we will be concerned with the reliability of physical sys
tems: structures, mechanical devices, and so on. However, the same concept' 
of robust reliability can be applied to mathematical models of systems. We 
consider here a simple example from the field of manufacturing technology. 

A small company produces plastic parts by high-temperature extrusion 
molding. The manufacturing process is characterized by several dynamic 
control variables: pressures, temperatures and flow rates at different points 
in the system. We will collectively denote these controf variables by a vector 
x. The control variables are liable to fluctuate, but the system is flexible, so 
that drift of one variable can be compensated by alteration of another. The 
status of the manufacturing process is assessed by an empirical performance 
function I(x), which is a polynomial in the control variables. The process 
is acceptable provided that the performance function is zero: I(x) = O. A 
control system modulates the control variables to maintain this condition. 

However, the performance polynomial I(x) is not perfect: its coefficients 
are based on past experience and thus are uncertain. How reliable is the 
manufacturing procedure, when operated to preserve I(x) = O? How much 
uncertainty in the coefficients of the performance function can the process 
tolerate? The process is reliable with respect to the uncertainty in the model 
if the manufactured product is acceptable even when the coefficients are quite 
wrong. On the other hand, the system is unreliable if it is fragile with respect 
to uncertainty in the coefficients; it is unreliable if small fluctuations in the 
model can result in unacceptable performance. Furthermore, we anticipate 
that the robustness may be different for different coefficients of I(x). While 
we will define an "overall reliability", we will also be able to evaluate spe
cific "conditional reliabilities" for individual coefficients. These conditional 
reliabilities define a "reliability surface" which is a multi-dimensional gener
alization of fig. 1.1. 

The reliability analysis of a mathematical model has three components, 
just like the analysis of system-reliability described on page 2. The com
ponents are (1/) a decision algorithm based on the mathematical model of 
the system, (2') a criterion for failure of the decision algorithm and (3') a 
model of uncertainty of the mathematical model, as well as other relevant 
uncertainties. 

In the plastic extrusion example, the control algorithm "makes decisions" 
and issues commands based on the performance function, which is the mathe
matical model in question. The controller fails if the product is unsatisfactory, 
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Example Model Failure Criterion Uncertainty 

Solar Panel Truss Large amplitude Excitation, 
vibration damping 

IShcll Buckling Buckling load Shell shape 
mechanics 

Fatigue Vibration Energy dissipation Excitation 
dynamics 

I Extrusion Performance Product acceptability Coeffs. of f(x) 
function 

Table 1.1: Recapitulation of examples. 

and the uncertainty lies in the coefficients of the performance function. 

1.5 Summary 

Table 1.1 recapitulates the examples of robust reliability discussed in the 
previous four sections. In this book, reliability is assessed in terms of ro
bustness to uncertain variation. The system or model is reliable if failure is 
avoided even when large deviations from nominal conditions occur. On the 
other hand, a system is not reliable if small fluctuations can lead to unac
ceptable performance. Robustness and fragility describe opposite extremes 
of reliability. 

In the solar panel example, the mechanical properties can be expressed 
by a truss model, while failure occurs if the vibration amplitude exceeds a 
given limit. The uncertainties are in the excitations as well as in the damping 
properties ofthe truss. The solar collector is reliable if unacceptable vibration 
amplitudes cannot occur even if the uncertainties are large. On the other 
hand, for example, the panel is unreliable if small deviations in the damping 
properties from the design specifications can result in unacceptably large 
oscillations. 

The thin-walled shell is described by a mechanical buckling model, and it 
fails if the buckling load ofthe shell is'exceeded. The buckling load is sensitive 
to geometrical imperfections, which are uncertain. The shell is unreliable if 
small shape imperfections entail the possibility of failure. 

Fatigue failure can occur in a structure subjected to variable low-ampli
tude cyclic loading. The behavior of the struct'ure is described by a vibration 
dynamics model. The evolution of damage is related to the dissipation of 
energy in the structure which eventually leads to fatigue failure. In practi
cal situations, the load patterns are variable and imprecisely known. The 
structure is reliable if it will avoid failure for a specified duration even in 
the presence of large load uncertainty. On the other hand, the structure is 
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unreliable if small deviations from design-loads can lead to premature failure. 
In plastic extrusion, an empirical performance function is used to regu

late plant variables. The coefficients of the function are uncertain, but the 
manufactuing process is reliable if the product is acceptable even with large 
parameter uncertainty. 
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Chapter 2 

Convexity and Uncertainty 

If you ask a person, 'what do you know?' he can tell you. If you ask him, 
'what do you not know?' what can he say? The phenomena of uncertainty lie 
in that tantalizing gap between what we do know and what we could know. 

2.1 Complex Uncertainty and Limited 
Information: Four Examples 

Every quantitative theory of reliability takes as its starting point a mathe
matical model for representing and quantifying uncertainty. The concept of 
robust reliability developed in this book is based on convex models of un
certainty. In this chapter we describe the basic properties of convex models 
which will be needed later on. Convex models are particularly suited for 
modelling the complex uncertain events which arise in many mechanical and 
structural applications. We begin with four brief case studies of uncertainty 
represented by convex models [16]. 

A convex model is a convex set of functions or vectors. Each element of 
the set represents a possible realization of an uncertain event. The set as a 
whole expresses the amount of variation of these events. In the examples that 
follow, these events are spatial distributions of imperfections in a structure, 
or temporal variation of the ground motion during an earthquake, and so on. 
The convex model, by its structure and position in the space within which 
it is defined, reflects what is known about the events: what types of events 
occur. On the other hand, the size of the set reflects the variability of the 
events: the gap between what we expect. and what could actually transpire. 

Buckling of thin-walled shells. Thin-walled shells such as cylinders 
and domes have very high load-bearing capacities compared to their weight. 
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For example, a sheet of paper stood on end buckles under slight pressure, 
while if rolled into a cylinder and taped it can withstand an axial loading of 
considerable weight. However, small geometrical imperfections in the shape 
of the shell can drastically reduce the maximum load which the shell can 
carry. 

A typical engineering question which arises is: what radial tolerance in the 
shell-shape assures that the weakest shell will suffer a reduction in buckling
load! by no more than a specified amount? In a more sophisticated analysis 
one recognizes that the boundary conditions of the shell, together with the 
shell dynamics, can allow greater tolerance in some regions of the shell tha:n 
others. Consequently, one can ask: what variation of the shell-shape tolerance 
over the surface of the shell is allowed? 

The first problem one confronts in addressing these questions is: how to 
model the range of possible shell shapes coming off a production line? Some 
information is available from actual measurements pf shell shapes, though it 
is scanty and very expensive (see, for example, [2, 53]). However, one can 
readily formulate an infinite set of functions which represents the uncertainty 
of the shapes: each function represents a particular shell shape, while the 
set expresses the uncertainty in which shape will actually occur. This is 
precisely a set-model for shell-shape uncertainty; when the set is convex, 
it is a convex model. Furthermore, one can do so in such a way that the 
set depends parametrically on the radial tolerance of the shell. Then it is 
possible to evaluate the buckling load of the weakest shell as a function of 
the radial tolerance [19, 20, 37]. In this way, the convex model incorporates 
uncertainty in the shell shape into the design and manufacturing procedure, 
without relying on probabilistic information. 

Vehicle vibrations on rough terrain. A vehicle traversing rough ter
rain can induce discomfort or even functional incapacity in the passengers 
as well as damage to on-board equipment. A reliable suspension system is 
optimized to reduce these effects. The optimization must be performed with 
respect to a model of the uncertain terrain. Statistical models have been 
employed for representing the variation of uncertain terrain [74]. However, 
verification of these models is time consuming and expensive. Alternatively, 
global features of the surface which are comparatively easily measured, such 
as maximum roughness or slope variation or other features, can be used to 
define sets of possible substrates. These sets are convex models of the sub
strate uncertainty. The design decisions are then made so as to assure that 
the worst ride (e.g. maximum instantaneous acceleration) induced by any 
allowed substrate is acceptable [20, 21]. 

Seismic safety. A major challenge in civil engineering design for seis
mically active regions is the prevention of life-threatening structural damage 
resulting from earthquakes. Also important is the amelioration of seismically
induced damage to equipment and secondary systems (power systems, com-

1 The buckling load is the least load at which the shell fails by buckling. 
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munications equipment, etc.). The design of seismically reliable structures is 
complicated by the wide temporal and spatial variability of ground motion 
during an earthquake and its complex interaction with structures. 

Global features of seismic events, such as total or instantaneous energy, 
can be used to define sets of seismic events which include extreme cases more 
explicitly than probabilistic models. It is fairly straightforward to formulate 
a convex model as the set of all seismic events consistent with available frag
mentary data constraining the seismic occurrence. One can then optimize 
the design with respect to this set of conceivable events. In this way infor
mation about earthquake-uncertainty is incorporated in the structural design 
and reliability analysis without postulating stochastic properties of seismic 
phenomena [33, 34, 84]. 

Design of a re~able pressure vessel. A standard task in structural 
engineering design is to choose the wall thickness of a pressure vessel subject 
to uncertain internal fluid pressure. If the probability.density function of the 
pressure fluctuations is known, then it is a matter of tairly straightforward 
analysis to determine the least wall thickness needed to assure that the prob
ability of failure by yielding is less than a specified amount. However, if high 
reliability is required (low probability for failure), then even very small errors 
in the tails of the probability density can result in large erroI;s in the chosen 
wall thickness [14; 20, pp.11-13]. A hybrid probabilistic-non-probabilistic 
approach is possible here. One defines the set of all probability densities 
which are consistent with available information. This set is a convex model 
for the uncertainty in the probability density. The wall thickness is then 
chosen with respect to this non-probabilistic specification of the uncertainty 
in the probability density of the pressure. 

2.2 Some Convex Models 

In this section we define a range of convex models of uncertainty, and discuss 
typical engineering considerations underlying the selection of a model. 

Energy-bound models. Consider a warped beam which deviates by 
y(x) from its nominal shape at position x along the length of the beam. 
Energy is required to straighten out such a beam. Or, conversely, energy was 
required to produce the warping. Specifying the amount of energy required 
still leaves some uncertainty as to the original shape of the beam. One type 
of energy-bound convex model of the shape-uncertainty is defined as the set 
of all beam-profiles requiring no more than an amount a of elastic energy to 
straighten them out [12]. This set of profiles is one type of convex model: 

Y(a) = {y(x): ~I 1L (y(x))2 dx ~ a} (2.1) 

where Land EI are the length and flexural rigidity of the beam, respectively, 
and dots imply differentiation with respect to position. (It is implicitly as-
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sumed that the elements of Y( 0:) satisfy the boundary conditions inherent in 
the mechanical system.) 

Energy-bounds can be related to uncertainty in ma~y situations. In 
section 2.1 we mentioned energy-bound models representing uncertainty of 
seismic input waveforms, in terms of bounds on the total or instantaneous 
ground-motion energy. Not infrequently the 'energy' is loosely defined and, 
in analogy to the energy of an electric current, the convex model is defined 
as a bound on a quadratic function. For example, if u(t) is a scalar function 
representing the uncertain ground motion as a function of time, a common 
energy-bound uncertainty model is: 

(2.2) 

Energy-bound models can be defined for vector fUJ;Lctions as well: 

(2.3) 

where V is a positive definite real syrametric matrix. The convex models 
of eqs.(2.2) and (2.3) are often called "cumulative energy-bound models", to 
distinguish them from the "instantaneous energy-bound model" which is the 
set of functions whose "energy" is constrained at each instant: 

U(o:) = {u(t): uT(t)Vu(t) ~ o:} (2.4) 

An enormously popular 'energy-bound' uncertainty model is the ellipsoid
bound model for vectors, studied extensively by Schweppe [81]. If v is the 
uncertain vector, then an ellipsoidal model for the uncertainty in v is the set 
of vectors contained within an ellipsoid: 

(2.5) 

where W is a real symmetric positive definite matrix. 
An immediate variation on the ellipsoid-bound model is the shifted el

lipsoid model, where the ellipsoid i::,; centered around a nominal or reference 
point, v: 

v 5 ( 0:) = { v: (v - vf W (v - v) ~ 0: } (2.6) 

Since Vs(o:) is simply a shifted version of V(o:), these two convex models are 
related as: 

Vs(o:) = yeo:) + v (2.7) 

where the + operator means that v is added to each element of V(o:). 
Envelope-bound Illodels. The need to represent geometric uncertain

ties, as well as other applications, gives rise to envelope-bound convex models. 
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Forces acting on an unknown domain of a structure [8], or obstacles of un
known size and position in air ducts [9], or local imperfections in shells [11] 
are all amenable to representation by envelope-bound models. Let g(x) be 
the uncertain function of a spatial variable x. An envelope-bound convex 
model is: 

(2.8) 

where gl(X) and g2(X) define the bounding envelope. To take a specific 
example, consider a beam of length L, so 0 :::; x :::; L. Suppose the beam is 
warped in the interval [a, b] but otherwise straight, and let g(x) represent the' 
imperfection profile of the beam. By choosing the envelope functions gl and 
g2 as follows, e(gl, g2) can represent uncertain local damage of magnitude 
not exceeding a: 

x ¢ la, b] 
x E la, b] , n = 1, 2 (2.9) 

Minkowski-norm models. The quadratic term vTWv in the convex 
model of eq.(2.5) is the square of a vector norm. This weighted euclidean 
norm, v'vTWv, is a generalization of the euclidean length of the vector v, 
which results when W is the identity mai;rix. But the weighted euclidean 
norm is itself a special case of the Minkowski norm, which is useful in defining 
a wide class of convex models. For r ~ 1, the Minkowski norm of a vector 
x E ~N is: 

(2.10) 

When r = 2 and x = W 1/ 2v, we obtain the weighted euclidean norm: 

(2.11) 

A Minkowski-norm convex model is defined as: 

(2.12) 

A remarkable thing happens to the Minkowski norm Ilxlir as r tends to 
infinity [48, p.15]: 

lim Ilxllr = max Ixnl 
r-oo n 

(2.13) 

This property of the Minkowski norm allows us to formulate an envelope
bound convex model. The symmetric envelope-bound convex model for vec
tors xE ~N contains all vectors whose elements are bounded by given values: 

e(x) = {x: Ixnl:::; xn, n = 1, ... , N} (2.14) 

To represent this convex model with the Minkowski norm, define a diagonal 
matrix X = diag(l/xl' ... , l/xN). The symmetric envelope-bound convex 
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model £(x) can be represented as follows. 

(2.15) 

In its nlost general form, the bounds of the envelope-bound convex model 
are not symmetric with respect to zero. Such a set is simply a translation of 
Woo(X). 

Slope-bound models. The envelope-bound concept can be applied to 
the slope rather than to the magnitude of a spatially uncertain quantity. 
Such convex models have been used in analysis of vehicle dynamics on bar
riers and uncertain rolling terrain [21]. Similarly, in modelling uncertain 
heating processes [18) the uncertain function may be constrained to increase 
monotonically between given limits, but to be otherwise of unknown varia
tion. 

For example, let ret) be the heat flux out of a nuclear reactor fuel element. 
which, during a transient, increases monotonically between rl and r2 over the 
time interval [0, T]. A slope-bound convex model for the uncertainty in ret) 
during the transient is: 

(2.16) 

Fourier-bound models. In many situations the engineer has partial 
spectral information for characterizing an uncertain phenomenon. For exam
ple, geometric shape-imperfections of thin walled shells, mentioned in sec
tion 2.1, have been measured spectrally [2, 53]. Data such as these lead to 
ellipsoid-bound models for the uncertainty in the spectral coefficients. Let c 
represent a vector of Fourier coefficients of the shape of the geometric imper
fection. A Fourier ellipsoid-bound convex model of uncertainty is [11, 37, 61, 
62]: 

(2.17) 

where c is a nominal Fourier-coefficient vector, W is a positive definite real 
symmetric matrix determining the shape of the ellipsoid and a determines 
the size of the ellipsoid and the amount of uncertainty. C(a) is in fact an 
energy-bound convex model, like eq.(2.6). 

Spectral envelope-bound models are also used. If u(w) is an uncertain 
Fourier transform, then a Fourier envelope-bound model is [14]: 

(2.18) 

where lu(w)1 is the absolute value of the complex function u(w), and Ul(W) 
and U2(W) are real envelope functions. 

Mass distribution models. In the assay of material it sometimes oc
curs that very little is known about the possible spatial distributions which 
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the material can assume. Such problems arise in nuclear radiological mea
surements [95], in nuclear waste assay [6, 24, 83], in subterranean geological 
prospecting [101] and elsewhere. The simplest convex model for representing 
unknown spatial distributions of material is the distribution-function model. 
Let m(x) be the density of analyte material at position x, distributed over 
domain X. The set of allowed distributions of total mass J.Lo is: 

Mo(J.Lo) = {m(x): m(x) 2: 0, Ix m(x) dx = J.Lo} (2.19) 

In some situations, the information which constrains the allowed spatial 
distributions of analyte material is the nth (usually 1st or 2nd) moments of 
the spatial distribution. In this case, a convex model for uncertainty in m( x) 
IS: 

(2.20) 

2.3 Expansion of Convex Models 

A convex model is a set which, when thought of geometrically, has a particular 
shape and size. The shape of the set indicates how the uNcertain events 
cluster, and the size of the set tells something about how much variation or 
uncertainty is anticipated. Consider for example an N-vector function u(t) 
representing a time-varying load distributed at N points on a structure. The 
nominal load history vector is u(t), but actual load histories may deviate 
from u(t). If we know an upper bound on the "instantaneous energy" of the 
load deviation from u(t), then we could use the instantaneous energy-bound 
convex model to represent the uncertainty in the load vector: 

U(o:) = {u(t): [u(t) - u(t))T [u(t) - u(t)] :::; 0:2 } (2.21 ) 

This is a set of N-dimensional functions. What is the "shape" of this 
set? A solid sphere in N-dimensional euclidean space, centered at the point 
x = (Xl, ... ,XN) and of radius R, is the set of points: 

(2.22) 

Or, equivalently, the solid sphere is the set of points x E ~N: 

(2.23) 

By analogy to eq.(2.23) we can think of the convex model U(o:) as a solid 
sphere of radius 0: in the space of functions. 

The "size" of the set U(o:) is 0:, in analogy to the radius R of the sphere. 
There are other ways of indicating size, such as diameter, circumference, 
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volume and so on. So when we refer to the size of a convex model we do 
not specify all there is to know about the set, but only give an indication, 
quantitative but partial, of the range of variation of the elemfnts of the convex 
model. 

The shape of a convex model is determined by the "guiding principle" 
by which the uncertain events cluster, while its size tells us how "tightly" 
the events cluster. In using a convex set to represent uncertainty we refer 
to the size parameter, such as a in eq.(2.21), as a measure of uncertainty. 
In the geometry of convex sets the size parameter is called the expansion 
parameter of the set. The set U(a) expands and contracts like a ballobn 
as a grows and diminishes, retaining its shape but varying its dimensions. 
In robust reliability analysis we will often ask: how much can the convex 
model of uncertainty expand before failure becomes possible. The system is 
robustly reliable if it can tolerate a large value of the uncertainty parameter 
before failure can occur. The basic connection between convex modelling and 
robust reliability lies in identifying the expansion' parameter as a measure 
of uncertainty, and then evaluating reliability as the amount of acceptable 
uncertainty. 

A convex model U(a) such as eq.(2.21) is a precisely defined set if a 
is given a value; any function u(t) either belongs to U(a) or it does not. 
However, in robust reliability analysis we will usually deal with the family 
of sets, U(a) for a ~ O. Every function (or at least a very broad class of 
functions) belongs to the family for some value of a. The family of convex 
models arranges the space of functions in a particular order which depends 
on the structure of the underlying set whose "shape" generates the family . 

. In practice we often will not know the value of a, and in robust reliability 
we do not need to know its value. What we need to know is how the uncertain 
events cluster, what is the rule which defines their common origin, what is the 
shape of the convex model, but not how tightly the uncertain events aggregate 
in any particular instance. Instead, robust reliability analysis focuses on the 
question: how large a value of a is consistent with no failure. 

2.4 The Structure of Convex Sets 

We are now ready to describe the quantitative properties of convex sets which 
will be useful in our study of robust reliability. 

2.4.1 Definition of Convexity 

A region R in the euclidean plane is convex if the line segment joining any 
two points in R is entirely in the region. For instance, ovals, triangles and 
squares delimit convex regions, though quadrilaterals mayor may not, as 
seen in fig. 2.1. 
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CONVEX NOT CONVEX 

Figure 2.1: Convex and non-convex regions on the plane. 

This graphical definition of convexity can be immediately generalized al
gebraically. Let S be a set of points in N-dimensional euclidean space ~N. 
The set S is convex if all weighted averages of points in S also belong to S. 
That is, S is convex if, for any points x and y in S, and fOf any number 
o :::; (J :::; 1, the point (Jx + (1 - (J)y also belongs to S: 

x, yES and 0:::; (J :::; 1 =::} j3x + (1- (J)y E S (2.24) 

This definition includes the line-segment definition for convex regions on the 
plane since the line segment joining any to points x and y on the plane is the 
set of points: 

(Jx + (1 - (J)y, for all 0:::; j3 :::; 1 (2.25) 

An expression such as j3x + (1 - (J)y, for 0 :::; (J :::; 1, is called a convex 
combination of x and y. Similarly, for points Xl, •.. , Xm and non-negative 
numbers j31, ... ,(Jm which sum to unity, the quantity L~l (JiXi is the convex 
combination of these points, and (J1, ... , j3m are convex coefficients. 

The algebraic definition of convexity, eq.(2.24), is perfectly valid also when 
the "points" x and yare functions rather than points in euclidean space. 

Example 1 Consider the set of scalar functions: 

(2.26) 

We can readily show that, for any functions u(t) E Sand vet) E S, and for 
any 0 :::; (J :::; 1, the function wet) = j3u(t) + (1- (J)v(t) also belongs to S. In 
other words, S is a convex set. To do this we must show that: 

(2.27) 
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which establishes the membership of w(t) in the set S. The Schwarz inequal
ity states that, for any real functions x(t) and yet), the following inequality 
holds: 

(J x(t)y(t) dt) 2 ::; J x2(t) dt J y2(t) dt (2.28) 

Equality holds in this relation if and only if the functions x(t) and yet) are 
proportional to one another: 

x(t) = cy(t) (2.29) 

where c is a constant. 
The integral in eq.(2.27) can be expressed: 

1 00 
w 2(t) dt = 100 [;1x(t) + (1 - ;1)y(t)]2 dt (2.30) 

;12100 x2(t) dt + 2;1(1 -;1) 1
00 x(t)y(t) dt 

+(1 - ;1)2100 y2(t) dt (2.31) 

Applying the Schwarz inequality to the second integral on the right this 
becomes: 

1
00 

w2(t) dt < ;12100 x2(t) dt 

+ 2;3(1 - j3) 100 x 2(t) dt 100 y2(t) dt 

+ (1 - ;3)2100 y2(t) dt (2.32) 

Since x and y both belong to S, each integral on the right is no greater than 
unity. Thus relation (2.32) becomes: 

(2.33) 

which proves that wet) belongs to S, which is therefore a convex set of func
tions. _ 

Exrunple 2 We now consider a similar example, this time for N-vectors in 
euclidean space. Consider the ellipsoid-bound convex model: 

(2.34) 

where rv is a real, symmetric, positive definite matrix. To show that V is a 
convex set we must show that, for any vectors u and v belonging to V, and 
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for any number 0 ::; 13 ::; 1, the vector w = j3u + (1 - j3)v also belongs to V. 
In other words, we must show that: 

(2.35) 

The Cauchy inequality for vectors states: 

(2.36) 

with equality if and only if the vectors x and yare proportional to one 
another: 

x = cy (2.37) 

where c is a scalar constant. Now the quadratic term in (2.35) can be written: 

[j3u + (1 - j3)vf W [j3u + (1- ,B)t7] (2.38) 

The middle term on the right can be written: 

(2.40) 

Combining this with eq.(2.39) and applying the Cauchy inequality one finds: 

wTWw < j32 uT l'Fu + 213(1- j3)v'uT Wuv'vTWv 

+(1- j3)2vT Wv (2.41 ) 

Since u and v both belong to vV, each quadratic term in this expression is 
no greater than unity. Consequently: 

(2.42) 

We conclude that w belongs to the set V, which is therefore convex. _ 

2.4.2 Extreme Points and Convex Hulls 

A square region on the plane is a convex set of points. For example, the 
following set defines a square centered at the origin: 

s = {(x, y): Ixl::; 1,lyl ::; I} (2.43) 

Any two points in the region define a line segment lying entirely within the 
region, hence S is convex. Conversely, any point P in the interior of the 
square lies between two boundary points A and B, as in fig. 2.2. Algebraically 
speaking, any point P in the interior can be expressed as the weighted average 
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A 

Figure 2.2: The interior point P is the weighted average of boundary points 
A and B. 

of two boundary points A and B, since the coordiBat.es Px and Py of P can 
be expressed as averages of the coordinates of A and B: 

Px = f3Ax + (1 - (3)Bx , Py = f3Ay + (1 - (3)By (2.44) 

The same convex coefficients, f3 and 1- {3, specify Px and Py. Furthermore, 
any point along an edge, other than a vertex, is the weighted average of two 
vertices. Only the vertices themselves cannot be represented as convex com
binations of other elements of the set. For any closed, convex set, its extreme 
points are those elements which cannot be expressed as convex combinations 
of other elements of the set. The extreme points of S in eq.(2.43) are the 
four vertices: 

&=((1,1), (1,-1), (-1,1), (-l,-I)} (2.45) 

The convex hull of a set g is the intersection of all convex sets containing 
g and is denoted ch(g). Roughly speaking, ch((J) is the "smallest" convex 
set containing g. Every set, whether or not it is convex, has a convex hull. 
The convex hull of a convex set is the set itself. 

Example 3 Consider an ellipsoidal shell in ~N: 

& = {x : , t x; = I} 
n=l Pn 

(2.46) 

where PI, ... ,PN are constants. This set is not convex, since the interior of 
the shell does not belong to the set. However, the solid ellipsoid: 

S = {x: t x; ~ I} 
n=l Pn 

(2.47) 

is convex, contains &, and no proper subset of S contains &, so S = ch(&). 
Furthermore, & is the set of extreme points of S .• 
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2.4.3 Extrema of Linear Functions on Convex Sets 

Matrix multiplication has the effect of transforming one vector into another: 

x -+ y: y=Ax (2.48) 

Likewise, the integral convolution transforms one function into another: 

get) -+ h(t) : h(t) = it K(t - T)g( T) dT (2.49) 

These are examples of linear transformations. A transformation T is linear 
on a set S if, for all elements x and y in S and all numbers f3 and " the 
following equality holds: 

T(f3x + 'l'Y) = f3T(x) + ,T(y) (2.50) 

A linear transformation is sometimes called a linear function, linear operator 
or linear map. 

In many analyses of robust reliability we will seek the extrema of a linear 
function on a convex set. The following theorem will often simplify the 
analysis. 

TheoreIIl 1 If T is a linear function and S is a closed and bounded set,2 
then T assumes the same extrema on S and on ch( S). 

If S is a convex set and [; is its set of extreme points, then S = ch(£). 
Consequently, the extrema of a linear function on S are the same as the 
extrema of the linear function on [;. 

ExaIIlple 4 Let S be the square region defined in eq.(2.43) and let [; be the 
set of extreme points, eq.(2.45). Consider the linear function: 

f(x,y)=x+y (2.51 ) 

The maximum of f on S equals the maximum on [;, which is easily found 
since [; contains only four elements. Thus: 

max f(x, y) = max fix, y) = f(l, 1) = 2 
(x,y)ES (x,y)EE" . 

(2.52) 

• 
ExaIIlple 5 Consider the ellipsoidal shell defined in eq.(2.46), which we re-
write as: 

£ = {x: xT Rx = I} (2.53) 

2This theorem is true for the wider class of compact sets. 
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where x E arN and R is the N x N diagonal matrix with 1/ p;, in the nth 
diagonal position. The solid ellipsoid of eq.(2.47) is the set: 

s = {x: xT Rx ::; I} (2.54) 

We seek the extrema on S of the following linear function: 

I(x) = wT x (2.55) 

where w is a constant vector. By theorem 1, it is sufficient to seek, the extrema 
of Ion £, since S is the convex bull of E. This is convenient since S is defined 
with an inequality, while E has an equality, so it is easier to optimize I on E 
than on S. 

We use the method of Lagrange multipliers. We wish to optimize I(x) 
subject to the constraint: 

0= 1- xT Rx (2.56) 

Adjoining the constraint to I(x) with an unknown multiplier, A, we define a 
new function: 

J = wT X + A(1 - xT Rx) (2.57) 

Optimizing J while also satisfying the constraint, eq.(2.56), is the same as 
optimizing I(x) subject to the constraint, since the constraint implies that 
the quantity multiplying A in (2.57) is zero. A necessary condition for an 
extremum is: 

o 

Hence the optimizing vector is: 

oj 
ax 
w - 2ARx 

1 -1 
X = 2A R w 

(2.58) 

(2.59) 

(2.60) 

This vector must satisfy the constraint, eq.(2.56), so A must assume one of 
the following values: 

1 
A = ±-JwT R-1w 

2 

Combining the last two relations results in the extrema of I(x) on S: 

• 

opt I(x) = ~JwT R-1 w 
xES 

(2.61 ) 

(2.62) 
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Figure 2.3: Hyperplane and half-spaces defined by a linear function. 

2.4.4 Hyperplane Separation of Convex Sets 

The analysis of robust reliability will lead to the need to determine the dis
jointness or intersection of convex sets. This is readily accomplished based 
on the idea of hyperplane separation, which we now discuss. 

Let w be a constant N-vector, so that f(x) = wT X is a linear function 
which maps points from ))(N to ))(1. For any constant, c, a hyperplane in ~N 
is the set of points x satisfying: 

(2.63) 

For example, if N = 2, this is the equation of a straight line in the plane. 
The perpendicular distance of the hyperplane (2.63) from the origin is 

Icl/VwTw. Consequently, if Ict! < leI. then the hyperplane wT x = C1 is 
parallel to the hyperplane wT x = c and closer to the origin. One implication 
of this is that all the points on one side of the hyperplane wT x = c satisfy: 

T 
W X < c (2.64) 

while all the points on the other side satisfy: 

(2.65) 

Thus the hyperplane w T x = c divides the space into two half-spaces whose 
members are characterized by the sign of c - wT x, as shown in fig. 2.3. 

A closed half-space is the set of points on one side of a hyperplane, in
cluding the hyperplane itself. The "stone grinder's" theorem establishes a 
close relation between convex sets and closed half-spaces. 
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Figure 2.4: Illustration of theorem 2, the stone grinder's theorem. 

Theorem 2 [78, p.gg}. A closed convex set is the intersection of all the 
closed half-spaces which contain it. 

The theorem is illustrated in fig. 2.4. This theorem gets its name because 
it assures us that any convex shape can be cut from a stone on a flat grinding 
wheel, (assuming the grinder has sufficient patience). 

This theorem is important not only for lapidary art. An immediate im
plication is that closed convex sets are disjoint if and only if a hyperplane 
separates them [52, p.145]: 

Theorem 3 Let 9 and 1-{ be non-empty, closed convex sets in ~N and let one 
of them be bounded. 9 and 1i are disjoint if and only if there is a hyperplane 
such that 9 is in one half-space and 1-{ is in the other. 

This theorem can be expressed algebraically as follows, illustrated by 
fig. 2.5. 9 and 1i are disjoint if and only if there is a linear function f(x) = 
wT x, defining a hyperplane, such that the maximum of f(x) on one of the 
sets is less than the minimum of f(x) on the other set: 

gn1f=0 (2.66) 

if and only if there is a vector w such that: 

max wT 9 < min wT h 
gEg hE1{ 

(2.67) 

A further simplification is obtained by exploiting theorem 1. Suppose 
that 9 and 1-{ are the convex hulls of sets r and <I> , respectively. Then 
theorem 1 implies that the extrema in (2.67) can be sought on rand <I>. 
Thus a necessary and sufficient condition for disjointness of 9 and 1-{ is the 
existence of a vector v such that: 

(2.68) 
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Figure 2.5: Illustration of theorem 3 and eq.(2.67). 

2.4.5 Linear Systems Driven by Convex Input Sets 

Vibrating mechanical systems such as bridges, buildings, milling machines, 
surface or air vehicles and so on, are excited by forces which are usually 
imperfectly known. It is frequently convenient to represent these uncertain 
loads with convex models. The dynamic vibrations of the mechanical system 
can often be represented by linear mathematical models, such as state space 
models or modal-decomposition models. An extremely important property of 
such representations is that the convex input set generates a convex output 
set. 

Consider the state-space representation of a linear system, where x(t) E 
?J(N is the state vector and u(t) E ?J(Ni is the input or load vector: 

dx 
dt = Ax(t) + Bu(t) (2.69) 

where A and B are constant matrices. The response at time t to load history 
u(t) is: 

(2.70) 

Let U(a) represent a convex model of uncertain input functions. That is, 

u(t) E U(a) (2.71) 

and U(a) is a convex set of functions. Each input function u(t) generates a 
response, xu(t). The response set is the set of all the functions xu(t): 

'R(a) = {x(t): x(t) = xu(t), for all u(t) E U(a)} (2.72) 
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The integral convolution in eq.(2.70) is a linear operator, so it is readily 
shown that n(a) is a convex set since U(a) is convex (problem 11). 

2.5 Clustering of Uncertain Events: 
The Convexity Theorem 

The convex models of uncertainty surveyed in section 2.2 are all COnl'ex sets 
of functions. From the engineering point of view, each of these sets is defined 
as the collection of all elements consistent with given informativn (an energy 
bound, a spectral envelope, and so on). The convexity of these sets arises 
'naturally', as a by-product. In this section we will discuss a theorem which 
indicates a connection between convexity and uncertainty. 

It is clear that set-models of uncertainty are not by necessity convex; 
important situations arise in which the sets involveclare not convex. How-. 
ever, the following elementary theorem [20] provides some indication of why 
convexity is not just accidental in the modelling of uncertainty. 

Let f(t) be a time (or space) varying uncertain vector function, and let 
f be a set of such functions. For a positive integer n, consider the set of 
functions constructed as n-fold averages of elements of f: 

It is well known that, as n -> 00, the sequence of sets :F n, n 
converges to the convex hull of f: 

lim :F n = ch (f) 
n ...... oo 

(For more general results see [3, 4, 5]). 

(2.73) 

1, 2, ... 

(2.74) 

This theorem suggests the following physical interpretation. If an un
certain, macroscopic process, represented by f(t), is formed as the linear 
superposition of numerous microscopic processes gm(t), each drawn from the 
set f, then the set of all processes f(t) will tend to be convex, regardless of 
the structure of the set r. In other words, we might expect that complex 
vector processes will tend to cluster in convex sets of functions. This high
lights the distinctive feature of convex models of uncertainty, in contrast to 
probabilistic models. While probabilistic models emphasize the frequency of 
occurrence of events, convex models stress the clustering or aggregation of 
uncertain events. 

Eq.(2.74) bears a suggestive similarity to the central limit theorem, even 
though the contents and proofs of these two theorems differ utterly. Let 
gl, g2, ... be independent, identically distributed random variables. Tech
nicalities aside, the central limit theorem states that, as n --+ 00, the dis
tribution of the sum f = In L:=l gm converges to a normal distribution, 
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regardless of how the Om'S are distributed. The physical implication is that 
if a macroscopic random quantity f is composed of a multitude of superim
posed independent random microscopic quantities Om, then f should tend to 
display a Y'ormal distribution. 

The central limit theorem and eq.(2.74) both relate fairly arbitrary micro
scopic uncertainties to rather more specific macroscopic uncertainty models. 
Despite tliis similarity, however, the points of emphasis of these two results 
are completely disparate. The central limit theorem directs attention to the 
structure of the probability measure, while eq.(2.74) focusses on the structure' 
of the event set [16]. 

Historically speaking, the proof of the central limit theorem, presented 
in 1810 by Laplace, was a great advance in understanding the fundamental 
mathematical natur~ of probability densities [91]. In addition, the theorem 
provided a justification of the least-squares estimation method developed five 
years before by Legendre and, independently, by GausS". Moreover, the central 
limit theorem directed the attention of researchers to probability densities and 
their deriva~ions. This led, in the course of the 19th century, to the discovery 
of other statistical distributions. 

In recent decades attention has been placed on extending the concept 
of probability density. In the place of classical probability functions one 
has membership functions and measures of possibility and necessity in fuzzy 
logic [35], belief functions in the Dempster-Shafer theory [75], and so on. 
The logical diversity of these theories is real and substantial, as evidenced by 
the distinct axiomatic bases on which they rest [43]. However, the intellec
tual connection to traditional uncertainty models is clear: modern as well as 
classical thought concentrates on the properties and structure of normalized 
non-negative functions defined on sets of events. 

In contrast, set-theoretical models of uncertainty, such as convex models, 
concentrate on the geometric structure of event-clusters. What has attracted 
the attention of workers in various technological areas is the fact that frag
mentary information about uncertain events often leads to the definition of a 
convex set of events. This provides both a standardized framework for anal
ysis, as well as a guide to the formulation of plausible uncertainty models 
based upon severe lack of prior information. 

2.6 Problems 

1. Show that any hyperplane in ~N is a convex set. 

2. Show that eqs.(2.2), (2.5), (2.8) and (2.12) define convex sets. 

3. Let C be a convex set and let p be a number. The set obtained by 
multiplying each element of C by P is denoted pC. Show that pC is 
convex. 
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4. Let 8 1 be the square centered at the origin, eq.(2.43), and let S2 be 
the shifted square: 

(2.75) 

Define S3 as the intersection of Sl and S2: S3 = Sl n S2' Is S3 
convex? Why? What are the extreme points of S3? 

5. Consider the set of N-dimensional functions defined in eq.(2.21). What 
are the extreme points of this set? 

6. What is the qualitative difference between the elements of the cumu
lative and instantaneous energy-bound convex models, eqs.(2.3) and 
(2.4)? 

7. t Optimize the quadratic function vT v on the ellipsoid-bound convex 
model, eq.(2.5). (Hint: this leads to an eigenvalue equation.) 

8. Let tP(t) be a known N -vector function, and optimize the linear integral 
operator: 

T 

J(t) = 1 tPT (t - T)U( T) dT (2.76) 

where the N -vector function u(t) belongs to the instantaneous energy
bound convex model, eq.(2.4). (Hint: use the Cauchy inequality). 

g. Repeat problem 8 when u(t) belongs to the cumulative energy-bound 
convex model, eq.(2.3). 

10. Consider the following two sets of N-vectors: 

{x: xT x ~ a}, 

{x: (x - x)T (x - x) ~ a} 
Determine the smallest value of a such that these sets intersect. 

11. Show that the response set R(a) defined in eq.(2.72) is convex. 

(2.77) 

(2.78) 

12. A diagnostic measurement point on a milling machine vibrates approx
imately as a simple harmonic oscillator, for which the maximum accel
eration, a, is related to the maximum displacement, x, and the square 
of the natural frequency, w2 , as a = w2 x. Thus, measuring a and x al
lows one to determine the natural frequency, which is useful diagnostic 
information. However, a range of complications such as measurement 
noise, system non-linearities, effects of additional modes of vibration, 
extraneous excitations and so on cause the measurement (x, a) to vary 
on a set of values for a given central frequency, w. In other words, 
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a2 -------

x 

Figure 2.6: Figure for problem 12. 

measurement of x and a determines w2 with some uncertainty. A sim
ple convex model represents the uncertainty in (x, a) by a circle, as in 
fig. 2.6. The set of measurements obtainable for given w 2 is: 

(2.79) 

where a = w2x. The parameter CI' expresses the amount of uncertainty. 
(a) The measurement (x, a) will be used to distinguish between two 
conditions of the machine, which have distinct natural frequencies, WI 

and W2. If the measurements must always correctly distinguish between 
these two conditions, how much uncertainty, CI', can be tolerated? (b) 
For fixed uncertainty, CI', and for a given natural frequency WI, what 
other frequencies W can always be distinguished based on the measure
ments (x, a)? 
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Chapter 3 

Robust Reliability of Static 
Systems 

3.1 Introduction 

Mechanical systems are hardly ever designed to fail. Failure occurs because 
the system differs from its nominal design, or because the operational envi
ronment changes, or the system is altered in some way, or unanticipated or 
extraordinary loads are applied. The robust reliability of a system is a mea
sure of its resistence to these uncertainties. The system is reliable if it can 
tolerate a large amount of uncertainty without failing. On the other hand, a 
system is not reliable if it is fragile with respect to uncertainty; it is unreliable 
if failure becomes a possibility as a result of small deviations from nominal 
circumstances. 

The analysis of robust reliability rests on three components: 

1. A mechanical model, describing the physical properties of the system. 

2. A failure criterion, specifying the conditions which constitute failure of 
the system. 

3. An uncertainty model, quantifying the uncertainties to which the sys
tem is subjected. These uncertainties may relate to the operational 
environment of the system, and may appear in the mechanical model 
as well as in the failure criterion. 

By combining these three components we determine the robust reliability: 
the greatest uncertainty which the mechanical system can tolerate without 
failure. 

In this chapter we will analyze the reliability of a range of mechanical 
systems. We limit ourselves to systems in which the uncertain phenomenon 
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Figure 3.1: Uncertain force profile on a beam. 

is not time varying. The systems considered in this chapter are also, by and 
large, static in time. The basic goal in each case is to determine the robust 
reliability. However, other questions arise as well. 

The analysis of reliability allows one to identify the influence of various 
properties or parameters of the mechanical system on its reliability. This 
leads naturally to optimization of the system design with respect to reliability. 

The analysis of reliability establishes a connection between uncertainty 
and reliability. When the uncertain factors, for instance geometrical dimen
sions or material properties, can be controlled during manufacture, the anal
ysis motivates the definition of criteria for quality control. 

We will study examples of these ideas in the sections which follow. 

3.2 Beam With An Uncertain Distributed 
Load 

We begin with a simple example to illustrate the basic features of robust reli
ability analysis. We will repeat this example four times in the present section, 
each time with a different uncertainty model. The outline of the analysis is 
the same in each case, but the details of the results can be quite different, 
depending on the prior information about the uncertainty as reflected in the 
convex model of the load variation. 

3.2.1 Uniform Load Uncertainty 

Consider a simply supported uniform beam of length L with a distributed 
load,. c/J( u) [N/m], as in fig. 3.1. We must specify the mechanical model, the 
uncertainty model and the failure criterion. We then determine the robust re
liability: the greatest uncertainty the mechanical system can tolerate without 
failure. 

Let RA denote the reaction at the x = 0 end and M (x) the bending 
moment at position x along the beam. Using the fact that M(L) = 0, the 
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bending moment at point x is: 

_\1 ( x) -RAX + 1x 
¢(u)(x - u) du (3.1) 

-IlL ¢(u)(L - u) du + 1x 
¢(u)(x - u) du (3.2) 

Now let us suppose that the load profile is uncertain, but bounded uni
formly along the beam. We will suppose that the only information we have 
about the load is that its magnitude nowhere exceeds some canstant un
known value a. We represent the load uncertainty with a uniform-bound 
convex model: 

U(a) = {¢(u): 1¢(u)l:S ex, O:S u:S L} (3.3) 

The set U( a) represents the range of uncertain variation of the load profile, 
and a, the uncertainty parameter, is a measure of the degree of uncertainty. 
If a is very small, then the load is nearly zero everywhere along the beam. 
Or, if ex is large then the load m.ay be large anywhere or everywhere. The 
greater the value of a, the less we know about the load profile. 

Let our failure criterion be proportional to the bending moment. That is, 
the beam fails if: 

max IAI( x) I > l'vler (3.4) 
x 

where Mer is the critical bending moment. 
For fixed position x along the beam, we can readily find the greatest bend

ing moment from among all the profiles consistent with the convex model, 
eq.(3.3). We re-write eq.(3.2) as: 

L - x l x x rL 
M(x) = --L- 0 ¢(u)u du - L J

x 
.p(u)(L - u) du (3.5) 

The integrands of both integrals have the same sign everywhere, while both 
integrals have negative coefficients. So, the maximum of M(x), subject to 
¢(u) E U(ex), is obtained by choosing .p(u) = -ex at each point on the beam. 
Thus: 

max IA1(x)1 
1¢(u)I~a-

-L-xlx(-Cl')UdU-~l\-Cl')(L-U)dU (3.6) 
L 0 L x 

a 
2x(L - x) (3.7) 

This is the greatest bending moment at position x, from among all the allowed 
load profiles bounded by amplitude ex. Because the set U(ex) of uncertain load 
profiles is symmetric with respect to zero, the least bending moment is the 
negative of eq.(3.7). 
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The maximum along the beam of x(L - x) occurs at x = L/2. So, 
the greatest bending moment which can occur in the beam, subject to the 
bounded uncertainty in the load profile, is: 

. aLL aL2 
max max IAf(x)1 = - . - . - = -
O~x~L 1¢(u)l~a . 2 2 2 8 

(3.8) 

The greatest value of the load-uncertainty parameter which is consistent with 
no-failure ",'ill be denoted t.hroughout the book by a. In the present example, 
t.his critical value of the uncertaint.y is obtained by comparing relations (3.1) 
and (3.8): 

(3.9) 

Now we will apply this result to the concept of robust reliability: a struc
t.ure is reliable if it is robust with respect to uncertainty; it is unreliable if 
small uncertainty can lead to failure. If a is large' then the beam will not 
fail even in the presence of large load uncertainty. On the other hand, if a is 
small then failure can occur even with slight deviation of the load profile from 
the nominal zero value. a is a measure of the reliability of the beam. One 
implication is that the reliability in this example decreases inversely with the 
square of the beam length. 

3.2.2 Shifted Uniform Load Uncertainty 

Now let us suppose that there is nominally a constant positive load </J [N/m] 
along the beam, subject to uncertaint.y a. Instead of eq.(3.3) we employ the 
shifted uniform-bound convex model of load profiles: 

Us (a) = {</J(u): I</J(u) - ¢I ::; a, 0::; u::; L} (3.10) 

In other words, our prior information concerning the load uncertainty is dif
ferent from the example of section 3.2.1. 

We must seek the maximum of Il'vf(x) I. However, unlike section 3.2.1, the 
minimum and maximum moments are not equal in magnitude because the 
convex model of load profiles is not symmetric with respect to zero. Eq.(3.5) 
is still valid, and arguing as in eq.(3.6) we find: 

max M(x) 
¢( u )EU.( a) 

min M(x) 
¢( u )EU.( a) 

So, instead of eq.(3.7) we have: 

(a-¢)x(L-x) 
2 

(a + ¢)x(L - x) 
2 

max IM(x)1 = (a + </J)x(L - x) 
¢(u)EU,(a) 2 

(3.11) 

(3.12) 

(3.13) 
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and instead of eq.(3.8) we find the greatest bending moment, which occurs 
at the midpoint of the beam, to be: 

max max IM(x)I=(ex+'¢)L2 

O~x~L </>(u)EU.(a) 8 
(3.14) 

Applying the failure criterion, eq.(3.4), we evaluate the robust reliability by 
equating the maximum moment to the critical moment and then solving for 
ex: 

Mer = (ex + '¢)L2 Q = 8Mcr _ '¢ (3.15) 
8 ==> £2 

Comparing this with eq.(3.9), we see that the nomimal load -;f reduces the 
robustness of the beam to load uncertainty. Furthermore, the reliability 
decreases as -;f increases, reaching zero when the nominal load produces the 
critical bending moment. At this level of nominal load even the smallest load 
deviation could result in failure. 

3.2.3 Load-Uncertainty Envelope 

Let us suppose that the nominal load is positive but varies along the beam, 
so the constant -;f of eq.(3.10) now becomes a function, -;feu). Also, let us 
presume additional prior information which specifies bounds which vary along 
the beam, implying greater load uncertainty in some parts of the beam than 
in others. The envelope-bound convex model describes the uncertain load 
profiles: 

Ue(ex) = {¢(u): I¢(u) - -;f(u) I ~ O'1/>(u), 0 ~ U ~ L} (3.16) 

As before, ex represents the "size" of the convex model and the overall load 
uncertainty. When a is small the load profile is close to the nominal profile 
-;feu), while as a increases the range of variation of ¢(u) increases as well. The 
functions -;f( 11) and 1/>( u) are known and are derived from our prior information 
about the load uncertainty. The value of the uncertainty parameter ex need 
not be known. This convex model is more detailed than the uniform-bound 
convex model Us(o') of eq.(3.10). 

Eq.(3.5) describes the bending moment at position x on the beam. To 
find the maximum absolute value of the bending moment we evaluate the 
minimum and maximum of M(x). Because of the negative coefficients of the 
integrals in eq.(3.5), the minimum is obtained by choosing the load to be 
maximal at each point, ¢(u) = -;feu) + a1/>(u) , resulting in: 

Ah(x) min M(x) 
¢(u)EU< 

_L~X iX [-;f(u)+O:1/>(U)]UdU 

x fL-
-Z ix [¢(u) + ex~(u)](L -u) du 

(3.17) 

(3.18) 
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The ma..ximum bending moment is obtained by using the minimum load pro
file, ¢(u) = q5(u) - (}:1J{u), leading to: 

max M(x) 
q;(u)EU. 

_ L ~ x lx[¢(u) _ a'!f;(u)]udu 

x 1L--~ [¢(u) - a'!f;(u)](L - u) du L . 
x 

These extremal moments can be succintly expressed as follows: 

where we have defined: 

1Jl(X) + a?J2(x) 

1J1(X) - a1J2(x) 

_ L - x r uq5(u) du _ ~ {L (L _ u)q5(x) du 
L Jo L Jx 

_L-x ru'I/J(u)du-~ rL(L_u)'!f;(x)du 
L Jo L Jx 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

Example 1 We continue with an example based on a specific choice of the 
positive nominal load profile q5(u) and the envelope function '!f;(u). Suppose 
that the nominal load increases toward the center of the beam as a half-sine 
wave: 

- - 1fU 
¢(u) = ¢sin L (3.25) 

where ¢ > O. Also, let the uncertainty envelope increase similarly towards 
the middle of the beam: 

.1,(. . 1fU 
'I' u) = SIlly (3.26) 

The load functions </J(u) and ¢(u) and the uncertainty parameter a all have 
the same units, while the envelope '!f;(u) is dimensionless in this example. 
The functions '11 (x) and 1J2 (x) become: 

1J1 (x) 

1J2(X) 

L2q5 . 1fX 
--sm-

1f2 L 

1J1 (x) I q5 

(3.27) 

(3.28) 

The least and greatest bending moment at point x on the beam can now be 
written as: 

~ L2 1fX 
-(¢ + a)- sin-

1f2 L 
(3.29) 

- L2 1fX 
-(</J - a)- sin-

7r2 L 
(3.30) 
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The greatest absolute bending moment occurs at the midpoint of the beam, 
and is: 

IM( )1_ (¢+a)L 2 
m;x - x - 7r2 (3.31) 

The robust reliability is obtained by equating the maximum bending moment 
to the critical value and solving for the uncertainty parameter a: 

(3.32) 

This result is quite similar to eq.(3.15), the difference arising from the differ
ent shapes of the nominal load and the envelope function. _ 

3.2.4 Fourier Ellipsoid-Bound Uncertainty 

The convex models (3.3), (3.10) and (3.16) employed in the last three sub
sections share an important common property, namely, that they impose no 
constraint on the rate of variation of the load profile along the beam. These 
uncertainty-sets all contain load profiles which vary quite rapidly along the 
beam, as well as profiles which change very slowly. For example, these sets 
all contain step-wise varying functions, as well as functions with little or no 
deviation from the nominal profile: We may have prior information about the 
physical processes generating the loads, which would lead us to exclude such 
load profiles. It not infrequently happens that information is available which 
indicates which spatial frequencies occur, and what ranges of amplitudes 
they may assume. For instance, in wind or wave excitation problems, or seis
mic applications, either experimental data or theoretical considerations can 
provide information of this sort. The Fourier ellipsoid-bound convex model 
provides one method for representing load uncertainty with this information, 
and we will now demonstrate its use in robust reliability analysis. 

Let us suppose that the distributed load ¢( u) can be represented with the 
following truncated Fourier series. That is, only particular spatial frequencies 
contribute to the load profiles: 

n2 

¢(u) = L f3nsinn~u, 0:::; u:::; L (3.33) 
n=nl 

where f3n is the uncertain Fourier coefficient of the nth mode of the load 
profile. This sum can be represented as a scalar product if we define the 
vector f3T = (f3nll •.. , f3n,) of Fourier coefficients and the vector I.T (u) = 
(sin nl7ru/ L, ... , sin n27fu/ L) of trigonometric functions. Eq.(3.33) becomes: 

(3.34) 

The uncertainty in the load profile i!, expressed in terms of uncertainty in 
the Fourier coefficient vector f3. The Fourier ellipsoid-bound model constrains 
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j3 within an ellipsoid: 

(3.35) 

where Hi is a positive definite real symmetric matrix. Combining eqs.(3.5) 
and (3,J4), the bending moment at position x on the beam becomes: 

M(x) j3T [_ L ~ x l x 
uJ'(u) du - I l\L -u)-y(u) du 1 (3.36) 

... J 
V' 

«(x} 

(3.37) 

which defines the known vector function «x) which is independent of the 
load uncertainty. 

We can express the bending moment as: 

(3.38) 

Cauchy's inequality, discussed in chapter 2, allows us to find the maximum 
bending moment, for all Fourier vectors in Uf: 

(3.39) 

We note that the greatest bending moment at position x along the beam is 
proportional to the uncertainty parameter, a, while the term in the radical is 
completely known. Applying the bending-moment failure criterion, eq.(3.4), 
the robust reliability can be expressed as: 

Alcr 
a = ----------~~~~~~ 

maxO~x~L J(T(x)I.V-:(x) 
(3.40) 

While some numerical analysis is required to find the maximum in the de
nominator of this expression, this is assisted by the fact that the elements of 
the vector «x) can be expressed analytically as: 

. L2. ll7TX 
(,,(x) = --~- sm---

w/r2 L 
(3.41) 

Example 2 Suppose ~V is the identity matrix, so the ellipsoid is simply a 
sphere. Then: 

. . L 4 '" 1 . ~ n7TX 
(T(x)«x) = -- ""- sm"-

7T4 ~ n4 L 
(3.42) 

n=nl 

The terms in this sum decrease rapidly with n, so that the maximum on x 
of (T (x )( (x) is dominated by the first term: 

(3.43) 
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L 

Figure 3.2: Fin configuration. 

Referring to eq.(3.40) we see that the reliability is very nearly given by: 

(3.44) 

Comparing this with the result from the uniform-bound model, eq.(3.9), we 
see that the reliability is substantially enhanced by constraining the spatial 
frequencies which compose the load function. _ 

3.3 Cooling Fin in an Uncertain Flow Field: 
Reliability and Design 

In this section we will extend our reliability analysis to include consideration 
of reliable design. Since the expression for robust reliability depends on the 
design parameters of the structure, we can identify the relative importance of 
different parameters for reliability. Furthermore, we will discuss the idea of 
design efficiency for reliability. Rather than having the reliability controlled 
by a single location on the structure, we choose the design so that the local 
reliability at each point on the structure is the same. 

3.3.1 Uniform Blade 

Consider a cooling fin with constant cross section along its length L, with 
width Wand thickness 2T, and slanted at pitch e with respect to a flowing 
fluid impinging on its broad side, as in fig. 3.2. The force imposed by the 
fluid on the fin is ¢i(y) [N/vertical meter]. The fluid force is directed along 
the x axis, and its amplitude is uncertain and variable along the length of 
the fin. Our aim is to determine the robust reliability as a function of the 
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geometrical parameters, length and pitch. We must consider the uncertainty 
model of the fluid force, the mechanical model of the fin, and the criterion 
by which the fin fails. By combining these three components we determine 
the robmt reliabilit.y: the greatest uncertainty which the mechanical system 
can tole) ate without failure. 

The uncertainty of the fluid force is represented by a uniform-bound con
vex model: 

U(ex) = {1>(Y): 0::; 1>(y) ::; ex} (3.45 ) 

We will assume that the fin fails if the absolute value of the bending 
moment at any point. v along the fin exceeds a critical value of Mer: 

IM(v)l> Mer (3.46) 

The mechanical model of the fin expresses the bending moment M (v) at 
position v along the fin, for fixed force profile 1>(y'L To determine M(v) we 
first determine the reaction force and moment at the root of the fin, point A. 
The force on an infinitestimal element du along the fin is: 

dF = 1;(u) sin 8 du (3.47) 

For force equilibrium we require that the reaction force in the x direction at 
A be: 

Ax = 1L dF = 1L 1>(u) sin 8 du 

The moment of force at A due to the load is obtained from: 

1L u sin 0 dF = 10L [u sin 8][1;( u) sin 0 duJ 

sin2 8 1L u¢( u) du 

(3.48) 

(3.49) 

(3.50) 

Now we calculate the bending moment M(v) at a distance v along the fin 
from A by the method of sections. Equilibrium on the section from ,A to v 
requires that the total moment vanish: 

0= -Axv sinO + MA - M(v) + lV [(v - u) sin 8][1>(u) sin 8 duJ (3.51 ) 

After some manipulations one finds the moment at v to be: 

A1(v) = sin 2 8 l\v -u)1;(u) du (3.52) 

We must determine the greatest moment, which will depend on the uncer
tainty parameter, 0:. Then, by applying the failure criterion we will det.ermine 
the robust reliability. 
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The extremal bending moment at v is obtained by choosing ¢(u) in the 
integral of eq.(3.52) from U(o:) to maximize IA1(v)l. The term (v - u) in the 
integrand is negative everywhere, so the maximum of IM(v)1 is obtained by 
choosing ¢/ u) constant and equal to 0:: 

M(v) max IM(v)1 = o:sin 2 8 f\v - u)du 
O~¢(u)~a Jv 

i(L-v)2 sin2 B, O~v~L 

The maximum bending moment occurs at the root of the fin and is: 

M max M(v) 
O~v~L 

_ oL2 sin2 () o:H2 
M(O) = =-

2 2 

(3.53) 

(3.54 ) 

(3.55) 

(3.56) 

where H = L sin () is the vertical displacement of the fin from root to tip. 
We determine the greatest uncertainty which can be tolerated without 

failure by employing the greatest bending moment in the condition for failure: 

2Jvlcr 

L2 sin2 8 
(3.57) 

(3.58) 

From eq.(3.57) we see that, for fixed fin length L, the robustness, ct, increases 
as the squared inverse of the sine of the pitch angle: low pitch is very robust, 
high pitch has low robustness. Eq.(3.58) implies that the robustness decreases 
with the inverse square of the root-to-tip displacement, H. 

ct is the greatest load uncertainty the fin can tolerate and not fail anywhere 
along its length. The failure is however in fact controlled by the bending 
moment at the root, whose maximum is greater than at any other point on 
the fin. In other words, positions 11 > 0 can tolerate greater uncertainty than 
ct without failing. We could say that ct is a conservative reliability estimate. 
Or, we could say that this fin design is inefficient from the point of view of 
reliability, since some parts of the fin can tolerate greater uncertainty than 
other parts. 

To explore this further, let us determine the greatest uncertainty tolerable 
at point 11. Failure at 11 occurs if: 

M(v) > Mer (3.59) 

Combining this with eq.(3.54) determines the critical load uncertainty for 
position v: 

(3.60) 
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Comparing this with the overall reliability, eq.(3.57), we see that: 

&(11) ~ & (3.61) 

with str let inequality for all v > o. 
We see that this rectangular fin cross-section is inefficient from the point of 

view of reliability: some parts of the fin are much more robust to uncertainty 
than other parts. In the follm ... ·ing subsections we will explore various options 
for attaining more uniformly reliable design. In section 3.3.2 we will keep 
the width HI constant and determine the optimal fin-thickness profile T(r). 
In section 3.3.3 we first consider linear variation of the width and find the 
optimal thickness variation. Alternatively, we find the optimal width profile 
given parabolic variation of the thickness. Finally, in section 3.3.4 we design 
both H-T and T to obtain a minimum-weight uniform-reliability design. 

3.3.2 Optimal Thickness Profile 

Suppose that the fin has a rectangular cross section with constant width HI of 
the surface on which the fluid impinges, and thickness 2T(v) whose variation 
along the fin length we are free to choose. In the previous section we saw that 
the bending moment at the root of the fin controlled the reliability, and that 
the local reliability is not constant along the fin. In this subsection we will 
investigate the design-for-reliability problem of choosing the thickness profile 
for maximum efficiency from the point of view of reliability. 

The uncertainty model is eq.(3.45), as before. The mechanical model for 
the bending moment is eq.(3.52), and its maximum on the set of uncertain 
load profiles is eq.(3.54). 

We now define the failure criterion. If the bending moment at v is M(v), 
then the normal stress (tension or compression) in the cross section, at height 
t above the neutral plane, is: 

M(v)t 
s(v,t) = lev) (3.62) 

where I = 2H1T3 /3 is the area moment of inertia of the cross section with 
respect to the neutral plane. So, the greatest normal stress in the fin section 
at point v along the fin is: 

.. M(v)T(v) 3M(v) 
s(1') = lev) = 2}.;VT2(v) (3.63) 

The fin fails if the normal stress at any point exceeds the critical value of Scr: 

S(lI) > Scr (3.64) 

Our method of analysis is to determine the local robustness a( v): the 
maximum tolerable uncertainty in the load at position v along the fin. We 
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tlien will be able to choose the fin profile T(v) for which the robustness &(v) 
is constant along the fin. This profile is "maximally efficient" from the point 
of view of reliability. 

Using the expression for the maximum bending moment at point v along 
the fin, eq.(3.54), we find the maximum normal stress on the cross section at 
point v to be: 

s(v) = M(v)T(v) = 30:(£ - v)2 sin2 e 
I( v) 4 WT2( v) 

(3.65 ) 

The greatest load uncertainty tolerable at this point on the fin is obtained 
by requiring that s( v) not exceed the critical stress: 

~( ) ~( ) 4111T 2(v)ser 
S V = Ser ~ 0: V = 2 

3 (L - v)2 sin () 
(3.66) 

From this relation we see that the local value of the ctiticalload uncertainty, 
&( v), is constant along the fin if the thickness decreases linearly to zero at 
the tip: 

T(v) ex L-v (3.67) 

So, from the point of view of robustness to load uncertainty, the most efficient 
fin thickness profile is a triangular shape with zero thickness at the tip. 

3.3.3 Optimal Width and Thickness Profiles 

Now we increase our design freedom, and allow both the width and thickness 
of the fin to vary along the length. 

Case 1. We first suppose the width to vary linearly and we seek the 
optimal thickness profile. The given width profile is: 

W(v) = {3v +r, 0 < v < L (3.68) 

The width has either an increasing or a decreasing taper, depending on the 
sign of (3. 

Using the expression for the maximum bending moment at point v along 
the fin, eq.(3.54), we find the maximum normal stress in the fin cross section 
at point v, as in eq.(3.65) except that now both Wand T depend on position: 

s( v = M( v )T(v) = 30:(L - V)2 sin2 () 

) lev) 4W(v)T2(v) 
(3.69) 

Equating this with the critical stress yields the greatest load uncertainty 
tolerable at point v, like eq.(3.66): 

~( ) ;:;;(.v) __ 4Hr(v)T2(1.')S.,er S v = Ser ~ ~ 
·3(L-v)2sm-e 

(3.70) 
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If the width varies linearly along the length of the fin as in eq.(3.68), then 
the robustness at point v becomes, from eq.(3.70): 

(3.71) 

For maximum efficiency from the reliability viewpoint, we choose the thick
ness profile so that a( v) is constant along the length of the fin. So, we require 
the thickness profile to have the following shape: 

Note that: 

dT 
- IX 
dv 

L -v 
T(v) IX ~ 

;3v + I 

(j3v + "r) + (1/2)13(£ - v) 
«(3v + ,)3/2 

W(v)+ (1/2);3(£ - v) 
W3/2(v) 

(3.72) 

(3.73) 

which is not always negative if f3 < 0, implying that the most efficient fin
thickness profile is not necessarily monotonically tapered in thickness from 
root to tip. 

Case 2. We now consider the reverse situation: the thickness profile is 
given and we ask for the most efficient width profile. Let the thickness of the 
fin vary parabolically along the length as: 

T2(V) = 'fJ(L - v), 0::; v ::; L (3.74) 

where 'fJ is a constant. Find the variation of the width for maximum efficiency 
or uniform reliability: find vV(v) so that a(v) is constant. 

Combining eqs.(3.70) and (3.74), the local robustness is: 

a(v) = 4W(v)'fJ~cr 
. 3(L-v)sm2 e (3.75) 

So, a linear width-taper with zero width at the tip is maximally efficient when 
the thickness is tapered parabolically as in eq.(3.74): 

W(v) IX L - v (3.76) 

3.3.4 Minimum Weight Design 

In the previous subsection we considered the uniform-reliability or maximum
efficiency design of one profile of the fin, either width or thickness, assuming 
that the other profile was determined beforehand. Let us simultaneously 
design both the width and the thickness profiles, to obtain a minimum-weight 
design which is also efficient from the reliability viewpoint. 
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Assuming uniform density throughout. the fin, we will minimize the vol
ume. The fin, whose width is aT(v) and thickness is 2T(v), has volume: 

(I 
V = 2 10 W(v)T(v) dv (3.77) 

Referring to eq.(3.70) we recall that the width and thickness profiles for 
uniform reliability along the length of the fin must be related as follows: 

(3.78) 

A great variety of profiles would sat.isfy this constraint. From a delimited 
class of profiles, we will find that particular profile which also minimizes the 
volume of the fin. Consider only polynomial profiles of the form: 

(L-V)I' 
W(v) = j3. -L- , (L-V)€ 

T(v) = TJ L (3.79) 

The shapes of the profiles are determined by the dimensionless exponents, I 
and ~, which must both be positive to keep aT and T finite. 

The uniform-reliability requirement, eq.(3.78), implies that the exponents 
~( and ~ are related as: 

I + 2~ = 2 or I = 2( 1 - 0 (3.80) 

Thus, since ~f 2': 0, we see that 0 :::; .; :::; 1. Now eq.(3.77) can be integrated 
to find the volume as a function of the unknown exponent, ';: 

,\/ = 2j3TfL 
3-~ 

(3.81) 

The volume is minimized by choosing ~ = 0 and I = 2. Thus the uniformly 
reliable fin of minimum volume, with width and thickness profiles of eq.(3.79), 
has constant thickness and quadratically varying width. 

3.3.5 Parameter Sensitivity of the Reliability 

In the previous subsections we have derived expressions for the robust reli
ability, a, as a function of the physical properties of the fin, and used these 
expressions to choose some of those properties, in particular the width and 
thickness profiles. The same relations can be employed to evaluate the sen
sitivity of the robustness to parameters which may be subject to fluctuation. 

Consider for instance the local robustness in eq.(3.70) with constant width 
and thickness. a( v) has a minimum at the root of the fin, which determines 
the overall robustness: 

( 3.82) 
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Figure 3.3: Normalized sensitivities of the robustness to the parameters Ser 

(solid), B (dash) and L (dash-dot). 

Let us suppose that the width and thickness dimensions Wand Tare 
fairly immune to uncertain fluctuation. We will examine the sensitivity of a 
to the critical stress, Ser, which is a material property, and to pitch B, and 
length L which are geometrical. A convenient dimensionless measurement of 
sensitivity is the differential variation of a to the logarithm of the parameter: 

8a 8a 
(3.83) 

Jln Ser 
Ser8 = a 

Ser 

8a /Ja = _ 2Ba (3.84) 
oln B 8B tan B 

oa oa ~ 
(3.85 ) 

olnL 
£- = -2a 

8£ 

Let pT = (ser, B, L) denote the parameter vector and let Ii . II denote the 
euclidean vector norm. It is useful to compare each individual squared sen
sitivity to the sum of the squares: 

(oa/ 8ln ser)2 1 
(3.86) 

118a/olnpW ;) + (2e / tan B)2 

(oa/oln e)2 1 
(3.87) 

Iloa/ oin pW 1 + .5(tanB/2e)2 

(8a / 8ln £) 2 1 
(3.88) 

Iloa/ oin pl12 (5/4) + (2e/tanB)2 
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These relations express the relative sensitivity of the robustness parameter, 
ii, to the various physical parameters of the system. Fig. 3.3 shows the 
variation of these normalized squared sensitivities versus the pitch angle of 
the fin. At low angles of pitch it is the pitch itself to which the reliability is 
most sensittve, while at large pitch angle the beam length L has the greatest 
impact on the reliability. 

3.4 Beam in Compression With Uncertain 
Initial Imperfections 

An ideal, straight, uniform beam which is loaded in axial compression will 
buckle laterally only if the load exceeds a threshold value, called the Euler 
buckling load. However, if the beam has geometrical imperfections, then 
buckling can occur for loads below the Euler threshold, In this section we 
will consider the reliability of axially compressed beams with imperfect and 
uncertain shapes. 

3.4.1 Band-Limited Energy-Bound Convex Model 

In chapter 1 we defined an energy-bound convex model in which the uncer
tainty parameter, a, is the maximum strain-energy of geometric imperfec
tions. This is a fruitful concept for robust reliability analysis, since the strain 
energy is also related to a criterion for failure, as we will see in this section. 
This will then lead directly to an expression for the robust reliability.l 

We can imagine a set of initially straight beams having been warped to 
various shapes by the investment of a certain amount of energy. The amount 
of energy imposes a constraint on the shapes which can occur, but does 
not uniquely determine the shape of the warped beam. Conversely, we can 
imagine a set of warped beams requiring a certain amount of elastic energy 
to straighten them out. Consider a uniform beam of length L and flexural 
rigidity EI. Instead of the nominally straight equilibrium shape, consider the 
set Y( a) of all shapes y(x), consistent with the boundary conditions, whose 
energy of deformation does not exceed a constant value, a: 

(3.89) 

Dots imply differentiation with respect to position. The unique nominal equi
librium shape, y(x) = 0, is replaced by an infinite set Y(a) of uncertain beam 
profiles. The set Y( a) is an energy-bound convex model for the uncertainty 
in the beam shape. We can think of Y( a) as the set of all beams which have 
suffered an initial deformation consuming elastic energy no greater than a, 

IThis section is based in part on [12]. 
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due to various environmental or manufacturing conditions or due to the op
erational history of the beam. It is implicitly assumed that the elements of 
a convex model such as Y( a) satisfy all the boundary conditions inherent in 
the mechanical system. 

It i~ useful to allow for the possibility that only a given range of mode 
shapes is involved in absorbing the initial deformation energy. Let us then 
define the band-limited energy-bound convex model as the set of functions of 
bounded deformation energy formed as the superposition of a finite number 
of sine functions. That is: 

Y(a, .No, NI) { 
N, 

y(x) = L an sin Tl~X : 

n=No 

~I 1£ (jj(x))2 dx ::; a} 

(3.90) 

This is the band-limited energy-bound convex model for representing uncer~ 
tainty in the initial deformation of the beam. 

3.4.2 Fourier Representation of Y(o:, No, N1 ) 

Let the initial deformation of the beam be denoted Yo(x) and expanded in a 
band-limited Fourier sine series on the interval [0, L]: 

l\r1 

() "'"' . mrx 
Yo x = L... a" SIll L 

n=No 

(3.91) 

yo(x) is an arbitrary element of yea, No, NI), so it must satisfy: 

(3.92) 

Substituting (3.91) into (3.92) and employing the orthogonality of the sine 
functions, this becomes the following constraint on the Fourier coefficients 
aNa, ... ,aN,: 

(3.93) 

where PE = E17r2 / L2 is the critical Euler load. Thus Y(a, No, Nd can be 
expressed as the set of Fourier coefficients aNo, ... ,aN, which satisfy (3.93): 

(3.94) 

This relation shows very clearly that Y(a,No,N1 ) is a convex set, whose 
Fourier representation is a multi-dimensional solid ellipsoid. 
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Y(a,No, Nt} is the convex hull of the following set of boundary points, 
which constitute a multi-dimensional ellipsoidal shell: 

(3.95) 

3.4.3 Maximum Additional Bending Moment 

We have defined the band-limited energy-bound convex model of uncertainty 
of the initial beam profile. Now we study the loaded beam and develop a 
failure criterion which accounts for the initial shape uncertainty. 

We consider beams with stress-free but unknown initial deformations of 
bounded energy. Because the initial deflection is free of internal stresses, 
failure (according to the maximum-moment criterion) of the loaded beam 
results from the additional bending moments induced. by the load. 

Let us suppose that the initial deformation Yo(x) belongs to the convex 
model Y(a, No, N 1 ), and load the beam axially at each end with a compres
sive force P. The additional deformation is denoted Yl(X) and satisfies the 
following differential equation: 

(3.96) 

Denote the load ratio by p = P / PE and assume that p < No. The solution 
of eq.(3.96) is [98, p.33]: 

Nl 
( '\""' an . n71"X 

Yl x) = P L.J -2-- sm-L 
n=No n - p 

(3.97) 

where aNo ' •.• ,aNl are the Fourier coefficients of the initial deformation, 
Yo(x). This relation shows that the initial imperfection enables deformation 
at loads below the Euler buckling load. 

A common failure criterion is to presume that the beam fails if the bend
ing stress in a tensile fiber exceeds the yield stress of the material. Since 
the initial deformation is stress-free, we calculate the maximum additional 
bending moment, Ml = ElYl. Employing eq.(3.97) to express the additional 
deflection at position ~, the bending moment at position ~ becomes: 

(3.98) 

Thus, to establish the bending-moment criterion for failure, we must find the 
following extremum: 

[ 
Nl 2 1 '\""' n an . n7r~ 

max . -pPE L.J -. -2-- sm--
aNo' ... ,aN l n -p L 

n=No 

(3.99) 
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subject to the constraint implied by Y(a,NQ, Nt), eq.(3.94). We replace the 
inequality in (3.94) by an equality because (3.99) is linear in the Fourier coef
ficients, aNo , ... , aN,. Using Lagrange optimization we obtain the following 
expression for the Fourier coefficients which optimize the magnitude of the 
bending moment at position ~: 

(3.100) 

The ± is applied uniformly to all the coefficients, one choice producing the 
maximum and the other the minimum. The additional bending moment 
profile Ml(X) of a beam with maximum moment at position ~ is: 

(3.101) 

To find the envelope of extremal additional bending moments we set. x = ~ 
in eq.(3.101): 

(3.102) 

Ml(~) is the greatest additional bending moment attainable at position ~ on 
the beam from any initial imperfection in Y(a, No, Nd. 

3.4.4 Critical-Energy Failure Criterion 

We are now prepared to relate the energy of the initial uncertainty to the 
failure of the loaded beam, and then to evaluate the robust reliability of the 
beam. The maximum-stress or maximum-moment concepts are local failure 
criteria, but they are governed by global energetic considerations. A beam 
fails locally, according to the maximum stress concept, when the bending 
stress reaches the yield value. From the energetic point of view, however, 
this local yielding can only occur when sufficient work has been done on the 
entire beam to bring the normal stress on a beam section at one point to its 
critical value. 

In the absence of initial deflections, the axially compressed beam allows 
no equilibrium deflection for loads less than the critical Euler load. However, 
the initial deformation of the beam allows the Euler buckling modes to appear 
even for P < PE, as shown by eq.(3.97). Furthermore, the strain energy of the 
iriitial elastic deformation, a, controls the maximum bending moment. which 
can be achieved (eq.(3.102»). Following this idea, we can define a critical 
value of the initial deformation energy, a, beyond which failure can occur for 
some beams in Y(a, No, Nd when loaded to the load ratio p, but below which 
it cannot. This is useful because the initial deformation energy also defines 
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the degree of uncertainty in the initial beam shape, a in eq. (3.90). Thus the 
failure criterion is directly related, through a single physical parameter, to 
the initial uncertainty. This critical a is precisely the robust reliability: the 
greatest uncertainty which the beam can tolerate without failing. 

Let uy he the tensile yield stress of the beam material, let c be the distance 
from the neutral plane of the beam to the most distant tensile fiber, and let 
[ be the moment of inertia of the beam cross section with respect to the 
neutral plane. The maximum moment concept states that the beam fails if 
the maximum additional bending moment reaches the critical value: 

M _ (TyI 
cr -

C 
(3.103) 

The maximum additional bending moment is obtained from eq.(3.102) by 
maximizing on the position variable: 

(3.104) 

Equating eqs.(3.103) and (3.104) and solving for a, we obtain the critical 
value of the initial deformation energy, beyond which beam failure will occur 
for some of the ensemble of beams generated by the uncertainty in the initial 
deformation, which is precisely the robust reliability: 

(3.105) 

Not every beam whose initial deflection energy equals a will fail when loaded 
to a load-ratio p. However at least one such beam will fail by having a local 
bending stress equal to uy . Conversely, if a' is less than 0;, then no beam will 
fail whose initial deformation is in Y( a', No, N1 ) and is then compressed to a 
load ratio p. The deformation energy in eq.(3.105) thus defines the largest set 
Y(a, No, N 1) of initial deformations for which the resulting loaded beams will 
have maximum bending stress not exceeding uy . 0; is the amount of initial 
imperfection-uncertainty, in units of energy, which the system can tolerate. 
When 0; is large the beam is robust with respect to imperfections; when 0; is 
small the beam is fragile to imperfection. 

Eq.(3.105) can be used to plot p versus a. Fig. 3.4 shows the dependence 
of the critical load ratio, p, on the initial deformation energy a, for several 
values of the initial deflection mode numbers No and N1. The critical energy 
is in ti"nits of Ue = 1f2 Uy2[2/4c2LPE, which is the strain energy of an Euler 
beam in buckling. These curves illustrate that the critical load ratio is very 
sensitive to the initial deformation energy. p asymptotically approaches zero 
as a increases. Conversely, p converges to NS as the initial deformation 
energy vanishes. Furthermore, the sum in eq.(3.105) converges rapidly and 
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Figure 3.4: Critical load ratio versus initial deformation energy. N 1 , N2 = 
1, 10 (left); 2,11 (middle); 5, 15 (right). 

is dominated by the lowest terms. Low-order modes are much more sensitive 
to initialdefiection energy than high-order modes. 

If No = 1 the maximum in eq.(3.105) occurs near ~ = L/2, and the sum 
can be truncated after the first term without too much error. One then 
finds that the load ratio, p, and the initial deformation energy, ct, satisfy the 
following approximate relationship at the onset of yielding: 

(3.106) 

The righthand side of eq.(3.106) expresses the geometrical and material prop
erties of the beam, while the lefthand side involves the load ratio p and the 
robustness a. The relationship expresses the trade-off between the load and 
the reliability. The reliability a decreases from infinity to zero as the load 
ratio p rises from zero to unity. 

3.5 Radial Buckling of Thin-Walled Shells: 
Reliability and Quality Control 

The load-bearing capability of thin-walled structures is greatly reduced by 
the presence of even small geometrical imperfections. From the point of view 
of robust reliability this means that these structures are fragile with respect 
to uncertainty in their geometry. In this section we evaluate the robust relia
bility of a shell with uncertain localized imperfections, and subject to radial 
pulse loading. In section 3.5.1 we characterize the uncertain imperfections 
in terms of the radial tolerance of the shell by using a uniform-bound con
vex model. In determining the reliability of the shell in terms of the radial 
tolerance to which it is manufactured, we establish a connection between 
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ACTUAL 

Figure 3.5: Cross section of a thin-walled shell showing actual and nominal 
shapes. 

reliability and a simple quality assurance parameter. In section 3.5.2 we 
represent the uncertainty with an Fourier ellipsoid-bound convex model. 

3.5.1 Localized Imperfections 

Consider a cross section of the shell before loading, as in fig. 3.5. The actual 
shape deviates from the nominal circular shape due to geometrical imperfec
tions which are of course greatly exaggerated in this figure. 

We will explore the dependence of the shell reliability on the amplitude 
and angular size of the geometrical imperfections. The initial deviation of 
the shell from its nominal shape, as a function of azimuthal position 0, is rep
resented by the imperfection function C(O). We wish to represent uncertainty 
in imperfections which subtend 1/! radians and have a maximum amplitude 
a. Consequently, we use the local uniform-bound convex model: 

'Vlub(a,'I/J) = {c(O): Ic(O)I::; ax(1/! - O)} 

where the characteristic function x( ¢) is defined as: 

x(¢) = { ~: ¢<o 
¢~O 

(3.107) 

(3.108) 

The imperfections in the set 'V1ub subtend an angle of 1/! degrees, and the 
amplitude of the imperfections varies between -a and +a. 

We will discuss a method for describing pulsed buckling phenomena which 
was derived by Abrahamson and Goodier [1) and is extensively discussed in 
Lindberg and Florence [60). Linear deflectIon equations are obtained by 
treating the material as perfectly plastic, by relating the initial geometrical 
imperfections to the initial radial velocity of the shell, and by considering 
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only short times after application of the load. The additional deflection of 
the shell at angle 8 and time r after loading is [61, eq.(14)]: 

f21r 
u(8,r) = 10 0(~)S(~,8,r)d~ (3.109) 

where 

(3.ll0) 

The value of N is chosen to include all of the functions On of significant 
amplitude. The functions On{ r) are called "amplification functions" since 
On modulates the contribution of the nth spatial frequency. On is defined 
as: 

where 

and 

7]<1 

rl> 1 
(3.111) 

(3.ll2) 

(3.113) 

where h is the wall thickness, a is the shell radius, (J'y is the yield stress, 
Eh is the strain hardening modulus and p is the density. The amplification 
function for 7] = 1 is Gn ( r) = r 2/2. 

The maximum response for o(~) E Vlub(a,7fi) is obtained when 0(0 
switches back and forth between +a and -a as S(~, 8, r) changes sign. The 
maximum response at angle 8 becomes: 

umax (8, r) = max u(O, r) = a f1/; IS(e, 0, r)1 de 
~E'Dlub 10 (3.114) 

From eq.(3.ll4), and exploiting the rotational symmetry of the function 
S(~, 0, r), we can express the maxirrium deflection at time r, which occurs at 
the midpoint of the imperfected zone, as: 

j 1/;/2 
umax(r) = U max (1/:j2, r) = a IS(e, 0, r)1 de 

-1/;/2 
(3.115) 

Values of umax/a are presented in table 3.1, for parameter values s = 20, 
r = 6 and N = 50. 

Excessive deflection of the shell a short time after loading is an indica
tion of subsequent failure. Experience in this field has led to the following 
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'Ij; (deg) Umax (T)/a 
1 1.38 
3 4.00 
5 6.25 
7 7.94 

10 9.21 
15 10.6 
20 14.6 
30 21.9 
50 27.4 

120 31.2 
360 31.8 

Table 3.1: The maximum response based on the localized uniform bound 
convex model. 

deflection-based failure criterion. Failure occurs when the deflection at time 
r exceeds tile critical value U cr : 

Urn ax > Ucr (3.116) 

Combining eqs.(3.115) and (3.116) determines the greatest amplitude of im
perfection uncertainty which the shell can tolerate: 

ii('I,b) = ",/2 Ucr 

L"'/2IS(~, 0, r)1 d~ 
(3.117) 

When ii is large the shell is robust to geometrical. imperfections; when ii is 
small the shell is fragile to even small deviations from its nominal shape. ii 
expresses the robustness of the shell to the amplitude of geometrical imper
fections. 

In eq.(3.117) we have expressed the limiting imperfection amplitude ii 
as a function of the angular width 'I,b of the imperfected region of the shell. 
We could just as well use eq.(3.117) to express the greatest tolerable angular 
width of an imperfected region, as a function of the maximum imperfection 
amplitude, ;j(a). When ;j is large the shell is robust to the angular size of 
imperfections, while a small value of ;j'indicates that the shell is sensitive to 
even small regions of geometrical imperfection. ;j( a) expresses the robustness 
of the shell to the angular width of geometrical imperfections. 

More generally, we could plot a curve of constant U rnax = U cr on 'I,b-vs
a coordinates. Points (a, 'I,b) below the curve represent convex models of 
imperfections which are robust, which will not fail, according to the criterion 
of eq.(3.116). Points above the curve represent convex models which include 
imperfections which will violate the condition for no-failure. The border 
between these two regions is the robustness curve. The results of table 3.1 
are used to construct such a plot, for Ucr = 1, as shown in fig. 3.6. 
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0.1 1 

Figure 3.6: Robustness curve. 

We can use fig. 3.6 as a manufacturing and inspection guideline for quality 
assurance. If we inspect for imperfections subtending an angle no smaller 
than 1/J, then the curve establishes the greatest acceptable radial tolerance n
of these imperfections. 

3.5.2 Fourier Ellipsoid-Bound 

The local uniform bound convex model presumes that our information about 
the uncertain imperfections is limited to radial tolerance and angular range. 
The reliability estimate may be substantially improved if spectral information 
about the imperfection is also available. 

The spectral information about the imperfections constrains the spatial 
frequencies which contribute to the geometrical deviation of the shell from its 
nominal shape. Rather than allowing the imperfection profile to assume any 
spatial frequency, the initial deviation of the shell from its nominal shape is 
described by a truncated Fourier series. In other words, the initial imperfec
tions are represented as the sum of certain spatial modes: 

N 

6(0) = 2:: (an cos nO + bn sin nO) (3.118) 
n=2 

Let D be the vector of Fourier coefficients: 

(3.119) 
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Uncertainty in these imperfections is described by the Fourier ellipsoid-bound 
convex model: 

(3.120) 

The shape of the ellipsoid determines the greatest possible contributions of 
the different spatial modes to the initial imperfections. The shape of the 
ellipsoid is determined by the positive definite real symmetric matrix W. 

The deformation of the shell at normalized time T after the impulse load
ing and at azimuthal position 8 is also expressed as a sum of spatial modal 
components: 

N 

U(8,T) L [anGn(T} cos n8 + bnGn(T) sin nO] (3.121) 
n=2 

= DTrjJ(O,T) (3.122) 

where 

<!J(O,T)T = (G2(T) cos 20, G3 (T) cos 38, ... , GN(T) cos NO, 

G2(T) sin 20, Ga(T) sin 38, ... , GN(T) sin NO)(3.123) 

The importance of a mode is determined by the corresponding amplifica
tion function Gn , defined in eq.(3.111). When Gn is large then that spatial 
mode will emerge prominently in the response. The distinctive feature of the 
ellipsoid-bound convex model is that it allows one to restrict the contribution 
to the initial imperfections of modes which are dominant in the response. Of 
course, one cannot arbitrarily restrict the modal components of the initial 
imperfections; this must be based on information about these imperfections. 
But here is precisely the point of contact with quality control considerations 
in manufacturing. Our present analysis allows us to determine which spatial 
modes of imperfection, if strictly controlled in manufacture, will enhance the 
immunity of the shells to initial imperfections. 

The greatest deflection at angle 0, in response to a radial impulse load, is 
the maximum of u(O, T) on the set Vfeb of allowed initial imperfection profiles: 

umax(O, T) = max DT <!J(O, T) (3.124) 
DeV feb 

This is the maximum of a linear functi<?n, DT <!J(8, T), on a convex set, Vfeb, 

and thus occurs on the boundary of the set. The method of Lagrange multi
pliers again provides an immediate solution [61]: 

(3.125) 

Combining this relation with the condition for failure, eq.(3.116), and 
maximizing on the angle, leads to an expression for the greatest uncertainty, 
ii, consistent with no failure of the shell: 

(3.126) 
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Eq.(3.126) is the robust reliability of the shell in terms of the spectral 
uncertainty in the imperfections, as represented by 'Dfeb. When Q is large 
then the shells can tolerate large uncertainty, while a small value of Q implies 
that the shells are fragile with respect to the imperfections. 

Let us now consider the two measures of reliability which we have derived, 
eqs.(3.117) and (3.126). The former expresses the robust reliability in terms 
of the radial tolerance to which the shell was produced. It is based on the 
local uniform-bound convex model'D\ub, and we denote it a\ub. Eq.(3.126) is 
the robust reliability of the shell in terms of spectral uncertainty, it is derived 
from the Fourier ellipsoid-bound convex model'Dfeb, and will be denoted afeb. 
These two measures of reliability are not directly comparable since they are 
derived from distinct uncertainty models and their units differ. 

However, one can determine the greatest initial imperfection for any shell 
in the ellipsoid-bound convex model (problem 4). This quantity, call it 8, can 
be directly compared with a\ub, which also has units of imperfection size. The 
ellipsoid-bound uncertainty model 'Dfeb expresses the relative importance of 
the varic)Us buckling modes; some modes contribute more and some less to the 
initial imperfections. Likewise the response to impulse loading, eq.(3.121), 
expresses the importance of the different buckling modes to the response. 
If'Dfeb strongly constrains the amplitudes of modes which dominate the re
sponse, then the ellipsoidal model will allow large initial imperfections, and 
thus will result in greater robust reliability of the shell. This is explored 
further in problem 5. 

3.6 Reliability of Serial and Parallel Networks 

In the previous sections we have considered the robust reliability of single 
components or structures. We now consider the reliability analysis of a net
work of interconnected units. We will establish the reliability of the network 
in terms of the subunit reliabilities, by assuming that the subunits fail or 
survive independently of one another, and that each subunit is subject to the 
same source of uncertainty. 

For instance, we may consider a collection of N cooling fins like the one 
studied in section 3.3. These fins may be different from each other, each 
with its own length, pitch and critical bending moment. The uncertainty 
associated with the nth subunit is represented by the convex model Un(a), 
and the robust reliability of the nth unit is an. While each subunit has its own 
mechanical model, failure criterion and uncertainty model, the uncertainty 
parameter a is common to all the subunits. 

Suppose that the cooling network of N fins fails if any single fin fails. The 
greatest uncertainty which the network can tolerate is equal to the greatest 
uncertainty which the least reliable subunit can tolerate: as soon as the 
uncertainty increases to the point where failure becomes possible for the 
least reliable subsystem, the entire network is vulnerable to failure. In this 
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Figure 3.7: A network with three independent subunits. 

situation the network reliability equals the least value from among the subunit 
r eliabili ties: 

~ . 
a = nun an 

lsnsN 
(3.127) 

This relation describes the reliability of N independent serial subunits, in 
analogy to a network of serial electronic ciruits which fails if any single circuit 
fails. 

At the other extreme, suppose the network continues to operate as long 
as even a single subunit remains operational. It is now the most reliable 
subunit which controls the network reliability: 

a = max an 
lsnsN 

(3.128) 

Again using the electronic analogy, this is the reliability of N independent 
parallel subunits. 

Let us now consider the general situation, in which the network fails 
when n out of the N subunits fail. Let us arrange the subunit reliabilities in 
increasing order: 

(3.129) 

Subunit fl is the least reliable, becoming eligible for failure when the un
certainty parameter is no less than a r ,. Similarly, subunit r2 is the next 
"weakest" subunit, while subunit fN is the most reliable. Failure of n sub
units becomes possible if the uncertainty parameter is at least as large as 
a r ", so the network reliability is: 

(3.130) 

This relation includes eqs.(3.127) and (3.128) as special cases. 

Exrunple 3 Consider the network shown in fig. 3.7, with three independent 
subunits subject to a common source of uncertainty. The individual subunit 
reliabilities are shown in the figure. The network as a whole remains oper
ational if either the upper branch (St) or the lower branch (S2 and S3) are 
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Figure 3.8: A network with seven independent subunits. 

functional. Following the line of reasoning we have developed, we conclude 
that the network reliability is: 

(3.131) 

The rationale for this relation is that S2 is in series with S3, and that Sl is 
parallel to (S2, S3)' • 

Diagrams such as fig. 3.7 are useful for representing parallel and serial 
components of a network, and for indicating the min/max structure of the 
network reliability. Let us consider a more complex example. 

Example 4 The network of fig. 3.8 has seven independent subunits. S3 and 
S4 are parallel, so the reliability of this couplet is: 

(3.132) 

Subunit S2 is in series with the parallel couple (S3, S4), so the reliability of 
these three subunits is: 

(3.133) 

Likewise, (S6, S7) is a parallel couplet in series with S5, so the reliability of 
these three subunits is: 

(3.134) 
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rp(u) 

Figure 3.9: Truss with uncertain load for problem 1. 

The triplets (52,53, 54) and (55, 56, 57) are in parallel, so their reliability 
IS: 

(3.135) 

Finally, 51 is parallel to (52, ... ,57), so the reliability of the entire network 
IS: 

(3.136) 

In this recursive manner we derive the reliability of a complex network of 
independent subunits subject to a common source of uncertainty. -

3.7 Problems 

1. The beams in the truss of fig. 3.9 are all of length L and have uniform 
cross section. The cross sectional area of the nth beam is An. The 
uncertainty in the distributed load ¢>( u) is described by the following 
convex model: 

U(a) = {¢>(u): 1¢(u)1 ~ a} (3.137) 

(a) Calculate the robust reliabilities of beams 2 and 4, which fail if the 
normal stress exceeds the (7 y. (b) Determine the ratio of areas of beams 
2 and 4 so that their robust reliabilities are the same. 

2. :I: Develop a generalization of the minimum-weight uniform-reliability 
result of section 3.3.4. Show that the conclusion of section 3.3.4 is valid 
for arbitrary width and thickness functions. Hint: use the following 
functions to represent general width and thickness profiles which satisfy 
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G F 

Figure 3.10: Structure for problem 6. 

the uniform-reli~bility criterion (3.78): 

(L V)' (L-V){ 1 
W(v) = f3 T f2(v/L), T(v) = TJ -L- f(v/L) (3.138) 

where f( V / L) is an arbitrary positive function. 

3. Use Lagrange optimization to derive relations (3.100) and (3.101). 

4. :j: Find the greatest amplitude of an initial imperfection in the Fourier 
ellipsoid-bound convex model, eq.(3.126). 

5. ( a) Perform numerical calculations to determine the relative importance 
of the modes in the response function, eq.(3.121). Assume the Fourier 
coefficients are all equal and use parameter values s = 20, T = 6 and 
N = 50. (b) Let the matrix W in the convex model Vfeb, eq.(3.120), be 
diagonal. Use the result of (a) to suggest a desirable W, with positive 
elements which sum to unity. What is the implication of this W for 
quality-control of the shell manufacturing process? :j:( c) What positive 
diagonal matrix, W, minimizes umax? 

6. The structure in fig. 3.10 is a horizontal platform which is loaded by 
two static vertical forces, F and G and by a rotational spring of stiffness 
k. The spring applies a momentMs = kO when the bar AC is tilted at 
an angle O. The forces F and G are uncertain and bounded: 

(3.139) 

The platform is satisfactorily horizontal if the angle of tilt is no greater 
than a given critical value: 

(3.140) 

Determine the robust reliability of the platform. 



www.manaraa.com

3.7 PROBLEMS 63 

- s5 
I-

a5 

r- -
s2 r---
a2 - s6 

r-
s1 s4 a6 $8 - - I- I- '- I-
a] a4 a8 

'--
s3 -
a3 

s7 '-- r--
a7 

Figure 3.11: Network for problem 7. 

7. Evaluate the robust reliability of the network of independent subunits 
in fig. 3.11. 

8. (a) Consider the three-unit network of fig. 3.7. If we could choose 
the subunit reliabilities such that 0'1 + 0:2 + 0:3 = 1, what choice would 
maximize the network reliability? (b) Suppose we could invest a limited 
resource, q, to improve the reliability of each subunit, according to the 
relation an = Pnqn, where Pn is a constant. The total amount of 
the resource available is Q, where ql + q2 + q3 = Q. What allocation 
optimizes the network reliability? 

9. Cooling fin with uncertain heat transfer coefficient. Fins are used to 
enhance the heat transfer between a solid body and a fluid. The local 
convective heat flux [Watts/m2] at position x along a thin infinitely 
long fin in steady state is [77, p.569]: 

q" (x) = h(To - Too)e - mx-./ii (3.141) 

where To and Too are root and tip temperatures, h is the heat transfer 
coefficient of the fin surface, and'm is a constant. The fin is designed 
for heat flux not exceeding a critical value, so failure of the fin can be 
defined as: 

max q"(X) ~ q~r 
x 

(3.142) 

'the heat transfer coefficient is constant over the fin surface, but subject 
to interval uncertainty: 

Ih-7iI::;o: (3.143) 

What is the robust reliability of the fin? 
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Chapter 4 

Robust Reliability of Time
Varying Systems 

In chapter 3 we studied the robust reliability of primarily static systems 
with time-invariant uncertainties. In the present chapter we will consider 
time-varying uncertainties and dynamic systems or processes which evolve 
in time. In sections 4.1 to 4.3 we consider linear elastic vibrations driven 
by uncertain time-varying loads. Uncertainties may exist in both the inputs 
and the failure states of the structure, which will lead to the ideas of input 
reliability and failure reliability, as well as the overall reliability of the sys
tem. When we consider general multi-dimensional systems we will assess the 
relative reliability of the individual modes or degrees of freedom, which is 
developed in section 4.4. In section 4.5 we study the reliability of dynamic 
buckling of an axially loaded shell. In section 4.6 we develop the robust relia
bility of a dynamically loaded structure which is vulnerable to fatigue failure 
under uncertain repetitive loading. 

4.1 Mass and Spring System 

Consider a one-dimensional undamped linear oscillator driven by uncertain 
inputs u(t): 

mx(t) + kx(t) = u(t), x(O) = x(O) = 0 ( 4.1) 

The input u(t) is an uncertain transient function described by a cumulative 
energy-bound convex model centered at the origin: 

U(O:i) = {u(t): 100 
u2(t)dt ~ O:;} ( 4.2) 
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The uncertainty parameter for the input is ai. The response to input u(t) is: 

1 1t x,,(t) = - u(r) sinw(t - r) dr 
mw 0 

( 4.3) 

where the natural frequency is w = Jk/m. 
Each input function produces a unique output function, and the input 

set as a whole generates a set of outputs, called the response set, which we 
denote: 

X(ad = {x,,(t) for all u E U(ain (404) 

We will suppose that failure occurs if the output is too close to a partic
ular critical value, /, and furthermore that this critical output value is itself 
uncertain. We will use a convex model to represent the uncertain failure 
values by defining the failure set as: 

( 4.5) 

For any function f(t) E :T(af), the system is considered to have failed at 
time t if x(t) = f(t). The nominal failure state is /, but any state which is 
within ±a f of / constitutes failure. The parameter a f expresses the amount 
of uncertainty in the value of the failure state. For simplicity we assume that 
O<af~f. 

The robust reliability of a system is a measure of its immunity to un
certainty. Since we have uncertainty both in the input function and in the 
failure state, we can evaluate the robust reliability with respect to either of 
these uncertainties separately, or to both of them together. That is, we can 
ask each of the following questions. 

1. For a given level a f of failure uncertainty, how much input uncertainty 
ai can the system tolerate without failing? We will call this quantity 
the input reliability, and denote it ai. Sometimes we will explicitly 
indicate the dependence of the input reliability on time and on the 
level offailure uncertainty by writing ai(t, a f). 

2. For a given level ai of input uncertainty, how much failure uncertainty 
af can the system tolerate without failing? We will call this the failure 
reliability, and denote it a f or, more completely, a f (t, ai). 

3. Considering input and failure uncertainties together, how much uncer
tainty in both of these quantities can the system tolerate? This is the 
overall reliability, represented by a or aCt). 

The system fails when the response hits a failure state: x,,(t) = J(t). In 
other words, failure can occur at time t if an element of the response set, 
XCai), takes a value which also occurs at the same time in the failure set, 
:F( a f). Consequently, in all three of these reliability analyses, evaluation 
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Figure 4.1: Response and failure sets at time t, showing their expansion and 
contraction with the uncertainty parameters frj and a f . 

of the reliability at an instant t hinges upon determining the disjointness of 
response and failure sets. Failure does not occur if and only if X(ai) and 
:F( a f) are disjoint: 

( 4.6) 

As explained in section 2.3, the convex sets X( ai) and F( a f) expand and 
contract astheir uncertainty parameters ai and af grow and diminish. X(ai) 
and :F(af) are sets of scalar functions, but the values assumed by these 
functions at any instant simply define intervals, as shown' in fig. 4.1. That is, 
fig. 4.1 is a cross-section of X(fri) and F(af) at a particular instant in time. 
X(frj,t) is an interval containing the origin. This interval will be large or 
small, depending on the value of aj. Similarly, :F( a f' t) is an interval around 
1, and the interval grows and shrinks with af. 

The input reliability at time t is the upper bound of the values of aj for 
which X( ai, t) and F( frf' t) are disjoint, for fixed failure uncertainty a f. Sim
ilarly, the failure reliability is the upper bound a f values for which X( frj, t) 
and F( af, t) are disjoint, for fixed input uncertainty ai. Finally, the overall 
reliability is obtained by treating fri and a f as the same uncertainty pa
rameter, a, and seeking the upper bound of a values at which the sets are 
disjoint. 

The input and response sets are centered at the origin, while the failure 
set is centered at the positive value 1, so the disjointness condition of relation 
(4.6) is equivalent to: 

max x,,(t) <: min /(t) 
uEU(a,) fEF(aJ) 

(4.7) 

The minimum on the right is simply 1- af. The maximum on the left is 
obtained with the aid of the Schwarz inequality, discussed on p.l8. One finds 
that the greatest value of the response at time tis: 

max x,,(t) = ai
3/ 2 ..J2wt - sin 2wt 

uEUCa,) 2mw 
( 4.8) 

So the response and failure sets are disjoint if and only if: 

2~3/2 J2wt - sin 2wt < 1 - a f ( 4.9) 
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Figure 4.2: Reliability indices versus 2wt. Solid: aCt); big-dash: aJ(t, 0'); 

small-dash: ai(t, O'J). 7 = 2, O'j = O'J = 2mw3 / 2 = 1. 

We can now evaluate the reliability indices for this system. 
For fixed failure uncertainty, 0' J, the input reliability at time t, aj (t, 0' J ), is 

the least value of O'j for which the response and failure sets intersect. Treating 
(4.9) as an equality and solving for O'j yields this conditional reliability: 

- 3/2 
~( ) (f-O'J)2mw 
O'i t, 0' J = ='~=:=='==:=~=::::; 

y2wt - sin 2wt 
(4.10) 

As shown by the small-dash line in fig. 4.2, the input reliability index ai(t, O'J), 
for 0' J = I, decreases monotonically in time, meaning that the amount of in
put uncertainty which can be tolerated diminishes in time. Conversely, for a 
given amount of input uncertainty O'j and failure uncertainty 0' J, the system 
is reliable - it will operate without failure - up to a particular time t J , 
which is the solution of: 

(4.11) 

Beyond instant t J the system can reach a failure state, if the input and failure 
uncertainties are O'j and 0' J, respectively. 

We now consider aJ(t, O'j). The failure reliability for fixed input uncer
tainty O'j is the least value of 0', 'for which the response and failure sets 
intersect. Solving for O'J in eq.(4.9) as an equality yields: 

aJ(t, O'i) = 7 - 2m:3 / 2 V2wt - sin 2wt (4.12) 

provided the righthand side is non-negative. a J (t, 0') decreases monotonically 
with t until no non-negative value of O'J can satisfy the condition for no
failure, as shown by the big-dash line in fig. 4.2 for O'j = 1. 

We have assumed in formulating .!he failure set, :F( 0' J ), that the failure 
uncertainty, O'J, is no greater than f. Consequently the failure reliability 
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index a j cannot exceed the value f. Furthermore, and also unlike the input 
reliability index, aj(t,a) reaches 0 at a finite time, to. In other words, for 
fixed input uncertainty ai, the system is able to reach a failure state at any 
time t > t" even if the failure uncertainty is zero. This makes sense since 
the nominal failure state] can eventually be reached. 

Now we consider the overall reliability index, which is evaluated by replac
ing both a; and ct j by ct in (4.9) and finding the least ct for which equality 
holds, resulting in: 

2mw3 / 2 ] 

aCt) = 2mw3/2 + v2wt - sin 2wt 
(4.13) 

aCt) is shown by the solid line in fig. 4.2, and displays a combination of the 
features of the input ·and failure reliability indices. We notice that all three 
curves coincide at a = aj = aj = 1. 

Examination of eqs.(4.10), (4.12) and (4.13) shows that: 

1 1 1 
aCt) = aiCt,O) + aj(t, 0) 

(4.14) 

That is, the overall reliability index, aCt), is the harmonic mean of the input 
and failure reliability indices at a; = ctj = O. From eqs.(4'.10) and (4.12) 
we see that a.(t,aj) and aj(t, ct,) decrease with ctj and cti, respectively, as 
we should expect. This, combined with eq.( 4.14), establishes the following 
inequality: 

1 1 1 
a (t) ~ a; (t, a j) + a j (t, ctj) 

(4.15) 

This is a special case of a more general result relating input, failure and 
overall reliabilities [17]. 

4.2 Seismic Safety of Secondary Equipment 

The simple harmonic oscillator studied in the previous section is useful for 
representing realistic problems, as we will show now with an example based 
on seismic safety of buildings. 

Seismically-safe design of buildings is not limited to assuring structural 
integrity alone. Also important is the functional integrity of critical sec
ondary equipment such as communication units, fire-control facilities, and so 
on. Building codes for seismically-safe structures require that the designer 
guarantee specified limits to the inertial forces acting on critical secondary 
equipment during earthquakes [90]. 

In this section we will use a convex model to represent uncertainty in 
the temporal waveform of an earthquake excitation, and derive an expression 
for the maximum inertial force which can be exerted on a piece of light 
equipment which is dynamically coupled to a building. The convex model 
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is chosen to include all waveforms consistent with given spectral information 
about the seismic ground motion. The secondary equipment is presumed 
to fail if the inertial force exceeds a given threshold value. We will then 
evaluatr the reliability of this equipment with respect to the uncertainty in 
the seismic excitation. An analysis such as this enables the designer to choose 
the dynamical coupling of the equipment to the building so as to optimize 
the reliability of the equipment. 

A major limitation of this analysis is its dependence on an accurate dy
namical model for the motion of the building during an earthquake and for 
the dynamical coupling of the building to the equipment. This is character
istic of any model-based dynamical analysis. 

An additional limitation is the paucity of information upon which the 
convex model is founded. However, the adverse effect of limited informa
tion about seismic variability cannot properly be viewed as a limitation of 
the analysis, but rather an inherent deficiency in the informational infra
structure upon which t,he analysis rests. To the extent that the convex model 
includes all earthquake ground motions consistent with existing information, 
the convex model is faithful to the information, without introducing addi
tional strong assumptions about earthquake behavior. It must of course be 
recognized that a convex model does introduce assumptions or extrapolations 
beyond the raw data. A convex model contains an infinity of functions while 
the primary observations are surely finite. 

It sometimes happens that statistical information about earthquake vari
ability is available, This can be used in various ways to generate a hybrid 
robust-probabilistic reliability analysis. In chapter 8 we will discuss one form 
of this combined analysis. 

4.2.1 Dynamics 

The structure to which the equipment is attached is modelled as an N
dimensional linear elastic system with viscous damping: 

M i(i) + Cx(t) + f{ xCi) = Bu(t) ( 4.16) 

where I'.1, C and f{ are constant mass, damping and stiffness matrices, respec
tively, x(t) is the N-dimensional defi,ection vector, u(t) is the NJ-dimensional 
input vector and B is a constant input matrix. 

The natural frequencies of the structure are WI, ... , WN, and the corre
sponding mode-shape vectors are vI, . , , , vN . The orthogonality and normal
ization properties of the mode shapes are: 

( 4.17) 

mn and (n are the modal mass and the damping ratio for the nth mode. 
We also define the damped natural frequencies as Wnd = wn }l - (~, and 
we assume that (2 < 1. The modal matrix is V = [vI, ... , v N ], so the 
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displacement vector x is related to the vector 'f/ of modal coordinates as 
x =V'f/. 

We will assume that the nth mode is dominant during seismic excitation, 
so the displ3.cement of the ith node of the structure is: 

(4.18) 

The secondary equipment is attached to the ith node of the structure. We 
will model this dynamical coupling as a first-order linear oscillator with mass, 
damping ratio and undamped natural frequency me, (e and We. Define Ce = 
2(eweme, Wed = WeV1 - (; and ke = w;me. We adopt the assumption of 
'cascaded dynamics', which asserts that the motion ofthe equipment is driven 
by the floor motion, but that the dynamics of the building are uneffected by 
the equipment motion. The equation of motion for the equipment is: 

mey(t) + Ce [y~t) - Xi(t)] + ke [yet) - Xi(t)] = 0 ( 4.20) 

where yet) is the equipment displacement with respect to the ground. For 
compactnes of notation we define the following quantities: 

(4.21 ) 

</Ji 1 = --"'-'---
memnWedWnd 

( 4.22) 

With these definitions, the deflection of the equipment becomes: 

y,,(t) = ~i lot </JnT Bu(8) it u(t - T)q( T - 8) dT dB ( 4.23) 
... .I 

V' 

r(t,8) 

which defines the function r(t, 8). This function can be integrated to yield: 

where ret, 8) is a dimensionless function defined as: 

r(t, B) = !e-(n w n(t-8) 
2 

( 4.24) 

x [C/l + 13) COSWnd(t - B) + C/2 - 14) sinwnd(t - B)] 

1 _"2 e-(e We(t-8) [- (,2 + ~(4) sinwed(t - 8) + C/l + 13) COSWed(t - B)] 

(4.25) 
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The following dimensionless coefficients are employed: 

(4.26) 

( 4.27) 

( 4.28) 

( 4.29) 

The integral r(t,8) in eq.( 4.23) always exists, but eq.( 4.25) is valid only if 
the following relation holds: 

( 4.30) 

We will assume throughout our calculations that this relation is valid. 
In seismic applications it is usually reasonable to assume that the excita

tion, u(t), is a scalar function, and we will do so. Define the scalar quantity: 

(4.31) 

where I is defined in eq.( 4.22). Then eq.( 4.23), the displacement of the 
equipment with respect to the ground, as a function of the ground motion 
becomes: 

( 4.32) 

The inertial force acting on the secondary equipment is approximated as: 

( 4.33) 

We can now evaluate the maximum inertial force exerted on the secondary 
equipment, by finding the maximum displacement, as the seismic input varies 
on its convex model. This will lead to an expression for the robust reliability 
of the equipment. 

4.2.2 Reliability with the Fourier-Envelope Model 

Let us assume that u(t) = 0 for t < 0, and that Iooo u2 (t) dt is bounded. Then 
the symmetrical Fourier transforms exist and are defined as: 

u(t) = -- u(w)e-Jwt dw, 1 /00 _ 
."f2i -00 

1 100 . u(w) = fie. u(t)e1 wt dt 
V27T 0 

(4.34) 

The Fourier-envelope convex model is the set of input functions u(t) for 
which the norm of the Fourier transform u(w) is contained in a real envelope: 

( 4.35) 



www.manaraa.com

4.2 SEISMIC SAFETY 73 

where R2 (w) is a known real envelope function, and a 2 is the uncertainty 
parameter representing our lack of information about the seismic input. 

The real and complex parts of u(w) are just the Fourier cosine and sine 
transforms ,::>f u(t), which we denote uc(w) and u.(w) respectively: 

u(w) = uc(w) + jus(w) (4.36) 

uc(w) and u. (w) are real functions: 

1 100 roc u(t) cos wt dt 
y21T 0 

( 4.37) 

u.(w) 1 100 roc u(t) sinwt dt 
y21T 0 

( 4.38) 

Substituting (4.36) into the first of eqs.(4.34) and recognizing that u(t) is 
a real function one finds: 

1 Joo u(t) = roc [uc(w)coswt-us(w)sinwt] dw 
y 21T -00 

( 4.39) 

Substituting this into eq.( 4.32) and changing the order of integration one 
finds the displacement of the equipment to be: 

where we define: 

1 1t tn= r(t,O)coswOdO 
y21T 0 

~ it ret, 0) sinwO dO 
y21T 0 

( 4.40) 

(4.41 ) 

( 4.42) 

To maximize y(t) on UPE(a) we note that the constraint on u(w), at each 
value of w, is: 

( 4.43) 

The Cauchy inequality is now used to find the maximum displacement as: 

yet) max yet) 
uEUPE 

(4.44) 

a;YmeWe 1: R(w)J~(t,w) + r;(t,w) dw ( 4.45) 

Employing eq.( 4.33), the maximum inertial force which can be exerted on 
the secondary equipment is: 

( 4.46) 
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The equipment is presumed not to fail if the inertial force does not exceed 
the critical value Fer: 

F < Fer ( 4.47) 

Combir:ing the last three relations, and writing them more explicitly, we 
obtain the following expression for the robust reliability of the secondary 
equipment with respect to the input uncertainty of the seismic excitation: 

Fermnwn~~ 
mewN? ( ¢;nT B) 

x [1: R(w)J~(t,w)+r;(t'W)dWrl ( 4.48) 

When a is large, great input uncertainty is consistent with failure-free oper
ation of the equipment. On the contrary, when a is small, the equipment is 
fragile with respect to input uncertainty and failur-e J:.an occur even with low 
input uncertainty. 

The robustness is inversely proportional to the equipment mass me and to 
the square of the natural frequency, We, of the equipment-structure coupling, 
and proportional to the modal mass mn and frequency Wn of the dominant 
structural mode. The quantities rc(t,w) and rs(t,w) are functions of dimen
sionless coefficients depending on the the damping ratios of the equipment 
and of the structural mode, and on the ratio wn/we of the structural to the 
equipment natural frequencies. The function R(w) is the convex model bound 
on the spectrum of the input, and is based on measured spectral variability of 
earthquakes. One can use eq.( 4.48) to assign values to the design parameters 
to optimize the robustness of the equipment. Similarly, this relation enables 
one to identify those physical parameters which are dominant in controlling 
the reliability of the equipment. 

4.3 Multi-Dimensional Vibrating Structures 

We have considered a simple harmonic oscillator in general terms in sec
tion 4.1, and in application to seismic reliability in section 4.2. We now 
consider the reliability of a linear elastic structure of arbitrary dimension, 
subject to uncertain inputs and uncertain failure states. 

4.3.1 Formulation 

Consider an L-dimensionallinear vibrating system represented by: 

My(t) + Ky(t) = Bu(t) ( 4.49) 

where M is the mass matrix and K is the stiffness matrix, yet) is the vector of 
displacements of the nodes of the structure, u( t) is an uncertain band-limited 
scalar input function and B E iJ(Lx 1 is the input matrix. 
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For t E [0, TJ, let the band-limited inputs be represented as: 

n" 

u(t) = L l'n sin mrt/T = l'T u(t) ( 4.50) 
n=nl 

Define N = n2 - nl + 1, so l' is the N-vector of Fourier coefficients and u(t) 
is an N-vector of sine functions. Let the uncertainty of the input Fourier 
coefficients be represented by an ellipsoid-bound convex model centered at 
the origin: 

(4.51) 

where Q is a real, symmetric, positive definite N x N matrix. 
The natural frequencies of the structure are WI, ... , W L and the corre

sponding mode-shape vectors are vI, ... , v L . The modal matrix is V = 
[vI, ... , v L ]. The orthogonality and normalization properties of the mode 
shapes are expressed in eq.(4.17). 

The mode shapes are' linearly independent, so the displacement vector 
yet) can be decomposed into modal components as: 

y( t) = V 7J(t) ( 4.52) 

The modal amplitudes 7JnCt) are dynamically uncoupled and, for zero initial 
conditions 7Jn(0) = ?in(O) = 0, one finds: 

TInCt) = _1_ r vnT Bu( T) sinwn(t - T) dT 
mnWn Jo 

For convenience let us define the functions: 

zn(t) = _1_ sinwnt 
mnWn 

( 4.53) 

(4.54) 

which are the elements of a diagonal matrix Z(t) = diag[zl(t), ... , ZN(t)]. 
Combining eqs.( 4.53) and (4.54), the vector of modal coordinates can be 
written as an explicit function of the input and the modal properties as 
follows: 

TI(t) = It Z(t - T)VT Bu( T) dT 

Expressing the input as U(T) = UT(Th; this becomes: 

(I t 
Z(t - TWT BuT (T) dT) 'Y 

... J 

v 
(T(t) 

(4.55) 

( 4.56) 

( 4.57) 

which defines the Lx N matri:>:. (T(t). The subscript on TJ-y expresses the de
pendence of the modal response upon the uncertain input Fourier coefficients, 
"y. 
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Each input function u(t) = O'T(th generates a response in modal-coor
dinate space, 1],(t) , and the set of all these modal output vectors is the modal 
response set, which can be represented: 

( 4.58) 

As in section 4.1, we identify output states which constitute failure if 
reached by the system. Let J(t) represent a displacement vector which, if 
reached by the system, constitutes failure. That is, the system is considered 
to have failed at time t if yet) = J(t). We will represent output failure states 
in Fourier expansion as: 

nz 

J(t) = L: 1fJn sin mrtjT (4.59) 
n=nl 

Collect the coefficient vectors 1fJn into a matrix '11 == ['lfn" ... , 1fJnzl E ~LxN, 
so the failure state can be expressed as: 

J(t) = wO'(t) (4.60) 

The Fourier coefficients of the nominal failure state are W. However, there 
is uncertainty in the failure state which is expressed in terms of uncertainty 
in its Fourier coefficients. Using a euclidean-norm bound convex model, the 
failure set is: 

:F(aj) = {J(t) = wO'(t): 11'11 - '11112 ~ aJ} (4.61 ) 

where the euclidean norm for matrices is: 

nz 

11'11 - '11112 = L: (1fJn - ~n{ (1fJn - ~n) ( 4.62) 

4.3.2 Reliability: Hyperplane Separation 

For input uncertainty Q'i and failure uncertainty a j, the condition for no
failure is that the response and failure sets are disjoint: 

X(ai) n :F(aj) = 0 ( 4.63) 

In other words, the input reliability ai (t, a j ), for fixed failure uncertainty Q' j , 

is the upper bound of values of ai for which this disjointness holds. Similarly, 
the Jailure reliability a j (t, ai), for fixed input uncertainty ai, is the upper 
bound of Q'j values at which the response and failure sets are disjoint. The 
overall reliability is obtained by replacing both Q'i and af by a in (4.63), and 
seeking the value of Q' at which the response and failure sets are just tangent. 
This is precisely the multi-dimensional analog of eq.(4.6). 
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To determine the robust reliability indices we must establish conditions 
for disjointness of the convex sets X and:F. This is readily done using 
the hyperplane separation theorem discussed in chapter 2. These sets are 
disjoint if and only if there is a hyperplane which separates the response set 
X from the failure set :F. Since the response set is centered at the origin, the 
hyperplane separation theorem implies that (4.63) holds if and only if there 
is a vector w E grL such that: 

max wT 7] < min wT f 
I1EX(a;) JE:F(aJ) 

(4.64) 

This can be written explicitly in terms of the uncertain Fourier coefficients 
I and W. Recall that elements of the response set can be written 7] = (T I, 
while elements of the failure set are f = Wu. Thus (4.64) becomes: 

max wTe(th < min wTwu(t) 
-yEU(CXi) iflE:F(cxJ) 

(4.65) 

These extrema are readily found using Lagrange optimization, and (4.64) can 
be expressed: 

( 4.66) 

where II . II is the euclidean norm for vectors. The response and failure sets 
are disjoint if and only if there is a vector w for which this inequality holds. 

4.3.3 Input Reliability 

Let us consider the application of relation (4.66) for determining the input 
reliability ai(t,CfJ) when there is no failure uncertainty, so aJ = O. The 
input reliability is the greatest value of a; for which there is a real L-vector 
w satisfying (4.66) as an equality: 

( 4.67) 

Let us suppose that e Q-1 ( is a positive definite matrix, which will usually be 
the case. Denote its eigenvalues and orthonormal eigenvectors as .A1, ... ,.AL 
and (J1, ... , (JL respectively. We can project wand Wu on the eigenvectors 
as: 

Denote liT 

Thus: 

and 

L 

W = L lIi(Ji 

i=l 

L 

and ~u = L {li(Ji ( 4.68) 
i=1 

(4.69) 

(4.70) 
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Figure 4.3: Schematic representation of disjoint response and failure sets. 

The uncertainty parameter (ti must be non-negative, so, squaring (4.67) we 
see that the input reliability is the greatest value of Q:i for which there is a 
unit vector v such that: 

e A-1/ 2J.LJ.LT A-1/2~ 

e~ 

(4.71) 

(4.72) 

where we have defined ~ = A1/2v. The maximum of the Raleigh quotient in 
eq.(4.72) is the greatest eigenvalue of the matrix in the numerator, which is 
J.LT A -1 J.L. Thus the input reliability, for zero failure uncertainty, is: 

(4.73) 

This equation establishes the relation between the dynamics of the system 
as embodied in (, the frequencies of excitation represented by the functions 
CT, the structure of the input uncertainty set as determined by Q, and the 
nominal failure state W. 

4.4 Modal Reliability 

In subsection 4.3.2 we used the hyperplane-separation theorem to determine 
the robust reliability of a multi-dimensional vibrational system. The disjoint
ness relation, (4.63), is the condition for no-failure, and it holds if and only 
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2 

~----------------------~~1 

Figure 4.4: Schematic representation of tangent response and failure sets. 

if there is a vector w satisfying inequality (4.64). In this section we will de
velop an interpretation of the vector w, which will lead to the idea of relative 
reliability of dynamic modes. 

4.4.1 Formulation 

The uncertain response set X( a) is disjoint from the uncertain failure set 
.1'(0') if and only if there is a vector w such that: 

max wTx < min wTf 
xEX(C>') fE:F(C>') 

(4.74) 

The overall reliability, ii, is the least upper bound of a-values for which these 
sets are disjoint. For any smaller value of 0' these sets are disjoint, and a 
range of hyperplanes will separate them, as shown in fig. 4.3. When 0' = ii 
the sets just touch. Let w be a vector defining a hyperplane tangent to the 
point of intersection, as in fig. 4.4. This vector will be unique if the boundary 
of the sets is smooth at the point of intersection, which is the usual case. 

Now, what information does this tan'gent vector w contain? Consider the 
schematic situation in fig. 4.5, where w is parallel to one axis and perpen
dicular to the other: w T = (1,0). The sets have been expanded until they 
touch, but it is evident that expansion along axis 2 (if we could separate it 
from expansion along axis 1) would have no effect on the reliability, which 
is controlled entirely by expansion along axis 1. Let us say then that the 
coordinate of axis 2 is "much more reliable" than the coordinate of axis 1. If, 
for instance, these are modal coordinates, we might say that the second mode 
is much more reliable than the first, since unlimited uncertainty is tolerable 
"along the second mode" before failure occurs, while uncertainty "along the 
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2 
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Figure 4.5: Schematic representation of tangent response and failure sets 
with a perpendicular separating hyperplane: wT = (1,0). 

first mode" controls the reliability index a. This is clearly a qualitative state
ment, since th~ sets expand in all directions at once, but it does represent 
the fact that the relative dispositions and shapes of the sets cause one mode 
to dominate over the other in determining the reliability. 

Returning to fig. 4.4, we notice that the tangent hyperplane is inclined at 
45° to the axes: wT = (1,1). This indicates, in contrast to the situation in 
fig. 4.5, that the axes contribute equally to the reliability index. 

In general, we can say that the elements of a vector w, which defines the 
tangent hyperplane separating response and failure sets, are inversely related 
to the relative reliability of the degrees of freedom of the corresponding axes. 

4.4.2 Coordinate Transformations 

An immediate consequence of the hyperplane separation theorem is that the 
reliability indices are unchanged by an orthogonal transformation of the re
sponse space. Let r be an orthogdnal transformation of the response space, 
transforming the response vector from y into x, according to the relation 
x = ry, and transforming the failure states from h to f as f = rho For 
example, we might choose r as the modal matrix of a linear elastic system, 
in which case y and h are the modal coordinates of the response x and of the 
failure state f, respectively. 

If X is the response set in the x coordinate system, let Y denote the 
response set in the transformed space of y vectors: 

y = rT X = {y: y = rT x, for all x E X} (4.75) 
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We can define the transformation of the failure set F similarly as 'H = rTF. 
The hyperplane-separation condition for disjointness of X from F is the exis
tence of a vector w such that relation (4.74) holds. Defining v = rT w shows 
that relaticn (4.74) is equivalent to: 

max vT y < min vT h 
!lEY hE1i 

(4.76) 

since vTy = wTry = wTx and vTh = wTrh = wTf. In other words, X(o:) 
and F( 0:) are disjoint if and only if Y( 0:) and 'H( 0:) are disjoint. Consequently, 
the reliability - the value of (t at which the sets are tangent - is unchanged 
by the coordinate transformation. 

However, the relative reliabilities of the degrees of freedom in the two 
coordinate systems may be quite different. In light of the equivalence of 
relations (4.74) and (4.76), we can derive the relative reliabilities of one set 
of coordinates from the relative reliabilities of another. For example, suppose 
that w in (4.74) defines t,he tangent separating hyperprane in the response 
space x whose coordinates are nodal displacement variables. The elements 
of w express the relative reliabilities of these displacement variables. Let r 
be the modal matrix, so that y = rT x is the modal coordinate vector. Then 
the tangent separating hyperplane in modal coordinate space is v = rT w. 
The elements of v express the relative reliabilities of the modal degrees of 
freedom. 

Furthermore, we can always define a coordinate transformation for which 
the reliability is "controlled" by a single variable. We do this as follows. 
Let w be a unit vector defined as in the previous paragraph: normal to 
the tangent separating hyperplane in nodal response space. Let W2, ... ,WN 

be an orthonormal basis for the null space of w. That is, wT Wn = 0 for 
n = 2, ... , N, and w; Wm = bnm . Now define a matrix H = [w, W2, ... , WN], 

which is an orthogonal matrix. That is, HT H = I. Let e1 be a vector 
having a '1' in the first element and '0' elsewhere. We see that HT defines 
a linear map which transforms w into e1 , since e1 = HT W. Now define a 
transformed response vector by q = HT x. Referring to the equivalence of 
relations (4.74) and (4.76) we see that the tangent separating hyperplane for 
coordinate system q is e1 . Thus the reliability is controlled entirely by t.he first 
coordinate of q, which can be expressed as the following linear combination 
of the nodal displacements: ql = e1 T HT x. 

4.5 Axially Loaded Thin-Walled Shell With 
Imperfect Initial Shape 

In chapter 3 we considered the reliability of cylindrical shells with radial load 
and azimuthally varying geometrical imperfections. In this section we con
sider a complementary problem, in treating the axially-loaded shell with rota
tionally symmetric imperfections. In both cases, the imperfection-sensitivity 
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of the thin-walled structure motivates the reliability analysis. Previously we 
employed a maximum-deflection criterion for failure, while now we will apply 
global energetic considerations to define failure. 

4.5.1 Dynamics 

The differential equation for rotationally symmetric motion of a thin-walled 
cylindrical shell is: 

rrw fPw [)2w Eh [)2wo 
D [)x4 + P [)x2 + ph [)t 2 + R2 W = -P [)x 2 (4.77) 

where x is the axial coordinate, t is the time, wo(x) is the initial imperfection 
of the shell at height x, w(x, t) is the additional shell displacement, D = 
Eh3 /12(1- v 2 ) is the flexural stiffness, E is Young's modulus, h is the shell
wall thickness, R is the shell radius, v is Poisson's ratio, P is the axial load 
and p is the density of the shell material. 

We will employ the following non-dimensional quantities: 

~ = x/L, 7 = WIt, A = PIPe! (4.78) 

where L is the shell length, WI is the first natural frequency of the shell and 
Pel is the lowest classical buckling load of the ideal shell: 

Eh2 

Pel = -=R-V"'3=( 1=-=v2;;=:) ( 4.79) 

In addition, we define non-dimensional additional displacement and initial 
imperfection: 

u = w/h, Uo = wo/h ( 4.80) 

The initial imperfection function can be expanded in a Fourier sine series: 
00 

uo(O = E an sin mr~ (4.81 ) 
n=1 

The differential equation of motion of the shell, for simply supported ends, 
can be solved to express the total normalized displacement, V(~,7), in terms 
of the Fourier coefficients of the initial imperfection, as follows [37]: 

00 

v(~, r) = uo(~) + u(~, 7) = E an [1 + 1Pn( 7)] sin mr~ 
n=1 

where the functions 1Pn( 7) are defined as: 

A~:n [cosh( rn 7) - 1], 

A~:n [cos(rn 7 ) - n 
A)'n2 7r 27 2an 

2«(3 + 7r2 ) , 

Pn > 0 

Pn < 0 

Pn = 0 

( 4.82) 

( 4.83) 
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where: 

(4.84) 

\- 2 2 f3 
Pn = "I - n 11" - 22' n 11" 

(4.85) 

4.5.2 Fourier Ellipsoid Bound 

Let us suppose that only N spatial modes appear in the initial imperfections, 
with indices m1, ... , mN. Thus the total normalized displacement, v(~, r) in 
eq.(4.82), is the sum of N terms, and can be expressed as the inner product 
of the vector aT = (amp ... , amN ) of uncertain Fourier coefficients with a 
vector (T(e r) of known functions: 

v(~, r).= aT u(~, r)[l + '¢n(r)] sin n;'( ( 4.86) 

where: 

( 4.87) 

The uncertainty in the Fourier coefficients of the initial imperfections are 
represented by an ellipsoid-bound convex model: 

(4.88) 

The strain energy in bending of a thin shell is a quadratic function of the 
curvature of the surface of the shell, while the strain energy of stretching of 
the middle surface of the shell is quadratic in the strains [98]. In light of 
the linear relation between the displacement v and the Fourier coefficients a, 
these quadratic functions are also quadratic in a. 

As an example, consider the integral over the shell surface of the squared 
curvature in the axial direction. Using dots to represent differentiation with 
respect to ~ and employing eq.(4.86) one finds: 

1211"11 (EPv)2 
-8 2 d~d() 

o 0 ~ 
211' 11 aT(T(~, T)(TT(~, T)ad~ (4.89) 

aT [211' !a 1 (T(~'T)(TT(~'T)d~] a (4.90) 
" .I v 

5 

(4.91) 

where 5 is a known real symmetric positive definite matrix. Thus the sur
face integral of the square of the axial curvature is quadratic in the Fourier 
coefficien ts. 
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We will study the reliability of the shell with a quadratic failure function 
based on eq.( 4.91). That is, failure will be assumed to occur when a quadratic 
function of the imperfection coefficients exceeds a critical value: 

(4.92) 

where R is real, symmetric and positive definite. R will be the matrix S of 
eq.( 4.90) if we consider only bending strain, or it will be a more complicated 
matrix if we consider both bending and stretching. 

To determine the reliability we must establish the maximum of aTRa 
subject to the quadratic constraint inherent in the convex model: 

max aT Ra subject to aTWa < a 
a 

( 4.93) 

First of all, it is evident that the maximum occurs with an a-vector for 
which aTWa = a, namely, a vector on the boundary-of A(a). Any a-vector in 
the interior of the ellipsoid would not give a maximum of aT Ra, since aT Ra 
would be increased by lengthening that interior vector out to the boundary. 
So, we may replace the inequality in (4.93) by an equality. 

Now the method of undetermined Lagrange multipliers yields a solution. 
Adjoin the constraint, aTWa = a, to the function we seek to maximize: 

( 4.94) 

Differentiation with respect to a yields a necessary condition for an extremum: 

dJ 
o = da = 2Ra - 2/1 Wa (4.95 ) 

Exploiting the fact that W is positive definite, this can be re-arranged as: 

( 4.96) 

Wl/2a must be an eigenvector of the real symmetric matrix W- 1/ 2 RW- 1/ 2, 
and /1 must be the corresponding eigenvalue. Employing the constraint to 
determine the normalization of the eigenvectors, we find that the maximum 
we seek is the greatest eigenvalue 6fthe matrix W- 1/ 2RW- 1/ 2: 

max aT Ra = a max eig [W- 1 / 2 RW- 1 / 2] 
aEA(a) 

( 4.97) 

Combining this with the failure criterion, (4.92), yields the following expres
sion for the robust reliability: 

Ecr 
a= --------~~--------~ 

max elg [W-l/2 RW-l/2] 
(4.98) 
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Figure 4.6: Schematic S-N curve for harmonic loading. 
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Example 1 Let the convex model of eq.(4.88) be a sphere, so W is the 
identity matrix. For the quadratic criterion aT Ra we will use the strain 
energy in axial bending, so instead of R we use S in eq.(4.90), which is a 
diagonal matrix whose nth diagonal element is 

27r fal [crn (e)]2 de 

n 4 7r5 [1 + lPn(rW 

The robustness, eq.(4.98), becomes: 

~ Ecr 
a= 2 

maxn n4 1T5 [1 + lPn( r)] 

( 4.99) 

(4.100) 

(4.101) 

The quantity lPn expresses the buckling dynamics ofthe nth mode ofthe shell, 
so this relation shows that the robust reliability of the shell is controlled by 
a critical or weakest mode. _ 

4.6 Fatigue Failure and Reliability 
With Uncertain Loading 

The mechanical properties of a solid structure degrade slowly in time when it 
is subjected to cyclical loads at stress levels well below the yield stress of the 
material. This degradation process is called high-cycle fatigue, and can lead 
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fit) 

Figure 4.7: A solid element subject to time-varying load. 

ultimately to failure of the material by the evolution of many small cracks 
or the eventual catastrophic growth of a single large crack. The classical 
laboratory assessment of damage evolution by fatigue is represented by the 
S-N curve, as in fig. 4.6, which expresses the amplitude, S, of the cyclic stress 
versus the number, N, ofload cycles to failure. Such curves are measured in 
idealized laboratory conditions, where the load cycles are carefully controlled. 
In practice of course the load history of a real engineering system is uncertain 
and quite variable, unlike the perfect harmonic loading used in measuring an 
S-N curve. A bridge, for instance, experiences complex repeated loads due 
to traffic as well as perhaps wind or waves. The cutting tool of a milling 
machine undergoes complicated repetitive loads resulting from the dynamic 
vibrational response induced by its stressful contact with the work piece. 
Other examples of complex quasi-periodic or repetitive but uncertain load 
patterns abound in many mechanical applications. 

In this section we will develop a phenomenological model for damage 
evolution and failure by high-cycle fatigue, and we will represent uncertainty 
in the load history with a convex model. This will serve as the basis for our 
analysis of the reliability with respect to fatigue failure. 

4.6.1 Damage Evolution 

Consider a small element in a machine or solid structure, subjected to time
varying axial load f(t), as shown in fig. 4.7. One common model for ap
proximately representing small-amplitude vibration of this element is the 
viscously-damped mass-spring system, whose differential equation is: 

mx(t) + cx(t) + kx(t) = f(t) ( 4.102) 

where m, c and k are constant positive mass, damping and stiffness coeffi
cients respectively, x(t) is the deflection and f(t) is the load. The natural 
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frequency is W = Jk/m and the damping ratio is ( = e/2w, which we assume 

is less than unity. The damped natural frequency is Wd = w~. 
For zero initial conditions and sub-critical damping (2 < 1, one can use 

Duhamel's ,:onvolution theorem to express the displacement as: 

1 it x(t) = -- J(r)e-(W(t-T) sinwd(t - r) dT 
mwd 0 

(4.103) 

The damping and stiffness parameters, c and k, change slowly as damage 
accumulates in the fatigue process which results from repeated loading. A 
duty cycle is a short duration T during which the system undergoes many 
vibrations but in which a very small increment of damage accumulates. We 
will assume that e and k are constant over durations T, and we will evaluate 
their long-range damage evolution by evaluating the small damage increments 
and revising the model parameters at the end of each duty cycle. We are not 
assuming that the system evolution is described by linear dynamic equations. 
We only assume that the oscillation-dynamics are linear during each short 
duration T. 

Numerous micromechanical models have been developed for understand
ing the evolution of load-related damage in structures. In particular, the evo
lution of fatigue damage has been fruitfully associated with vibro-acoustical 
dissipation of energy [15, 27, 28, 72]. We apply this idea to the vibration 
model of eq.(4.102), in which energy is introduced by the load, flows through 
the inertial degree of freedom, and is dissipated. Some of this dissipated 
energy results in damage, leading to fatigue. 

The dissipative force acting on the system at any instant is ex [N]. An 
infinitesimal displacement dx does exdx [J] of work on the system. This 
displacement occurs in a time interval dt, so the rate of work on the system 
is exdx/dt = ex 2 [W]. The accumulated energy loss in a short duty cycle of 
duration T during which the physical parameters p = (e, k) of the system 
remain unchanged, is: 

T 

E(p) = 10 cx2 (t) dt (4.104) 

The associated damage is modelled as a geometric function of the dissipated 
energy: 

b(p) = J [E(p)]" (4.105) 

where 'Y and v are positive constants. 
\\Fe need expressions for variation of the model parameters c and k with 

the total accumulated damage. The dominant assumption which we will make 
is that, while the accumulated normalized damage, b.., depends on the load 
history, J(t), the model parameters e and k depend only on the magnitude 
of the accumulated damage. With this and some additional assumptions [15] 
one can show that the damage evolution must be exponential: 

(4.106) 
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The parameters 13c and 13k are scalars which need to be determined either 
from empirical data or from fundamental physical considerations. Failure 
occurs when .6. reaches the critical value, .6.cr . 

4.6.2 Uncertain Load Histories and Maximum Damage 
Increment 

The input which drives the system and generates the dynamical fatigue aging 
is subject to uncertainty. We will model this uncertainty with the FOUI;ier 
ellipsoid-bound convex model. Assume that the input can be represented 
during a duty cycle [0, T] by a sum of harmonic functions: 

nf 

"" kn 7rt J(t) = L..J~n cos T 
n=l 

(4.107) 

where ~n is the Fourier coefficient of the nth temporal mode of the input 
and kn is an integer. Concatenate the Fourier coefficients in a vector: ~T = 
(6, ... ,~nf)· The Fourier ellipsoid-bound convex model is the following set 
of allowed values of the Fourier coefficient vector: 

( 4.108) 

W is a real symmetric positive definite matrix which determines the shape 
of the ellipsoid within which the Fourier-coefficient vectors vary. The uncer
tainty parameter a 2 determines the size of the ellipsoid. ~ is the center point 
of the ellipsoid and is based on the nominal or typical input; it may be zero. 

For later use we define the quantities Zmn for m, n = 1, ... , n r 

i T [it . k trr ] coo G(t - r) cos mT dr [I t G(t - r) cos kn;r dr] dt 

(4.109) 

where: 
1 G(t - r) = __ e-(w(t-r) sinwd(t - r) 

mWd 
(4.110) 

and G(t - r) = dG(t - r)/dt. Define Z as the nrdimensional square matrix 
constructed from the terms Zmn, m, n = 1, ... , nf. Note that Z is real and 
symmetric and depends on m, c and k. 

We .can now evaluate the maximum increment of damage which can accrue 
during a duty cycle, for any load-history allowed by the convex model. 

Substituting eq.( 4.107) into eq.( 4.103) and differentiating, one finds that 
the energy loss in a duty cycle, eq.(4.104), becomes: 

(4.111) 
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where the elements of the matrix Z are defined in eq.(4.109). Thus the 
increment of energy loss E during a duty cycle is quadratic in the Fourier 
coefficients of the uncertain load history. The Fourier coefficients of the load 
are constra:ned by the convex model, so, to find the maximum increment of 
damage in 1 duty cycle, we must seek the maximum of E(p) on the set Ffeb: 

( 4.112) 

Combining this with eq.(4.105) we have the greatest damage which can occur 
in a duration T: 

( 4.113) 

4.6.3 The Least-Lifetime Recursion 

Starting from a given amount of damage, ~, our aim is.to.evaluate N(~): the 
least number of duty cycles which results in failure, driven by a convex model 
of load histories. From this we will be able to evaluate the fatigue reliability. 
Failure can be variously defined, not necessarily as ultimate catastrophe. For 
example, one may choose the transition between different regimes of damage 
evolution, such as the transition from micro-crack growth to growth of a single 
dominant crack. The amount of damage is defined implicitly 'with respect to 
a reference model. Our analysis is based on the following assumptions: 

1. Failure occurs when the damage reaches a critical value, ~er. 

2. The damage increases continuously from ~ to ~er' That is, the in
crements of damage accumulating in each duty cycle are very small 
compared to the critical value, so that variation of the accumulated 
damage with age can be treated as a continuously increasing process. 

3. Starting from a system whose accumulated damage is ~, the least time 
to failure, N (~), depends only on ~. 

These assumptions imply that N(~) can be calculated from a recursive 
relation [15] which we explain as follows. Suppose the number of duty cycles 
to failure, starting from damage level ~er - y, is n: 

N(~er - y) = n ( 4.114) 

Then failure occurs after n + 1 cycles, starting from a slightly lower damage 
level ~er - Y - €, if the maximum damage increment in one cycle is sufficient 
to raise the level of damage to .::ler - y. That is: 

N(~er-y-€)=n+l if ~er-y-€+6(~cr-y-€)=~cr-y (4.115) 

Simplifying the expression on the right, this becomes: 

N(~cr - y - €) = n + 1 if € = 6(~cr - y - €) (4.116) 
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This, together with eq.( 4.114), constitute recursive relations for the least 
number of duty cycles to failure. Defining d = d er - y, these recursive 
relations become: 

The recursion begins at N(der ) = O. 

(4.117) 

(4.118) 

4.6.4 Least-Lifetime With Uncertain Harmonic Loads 

We first consider harmonic loading with full strain reversal, in which the 
amplitude of the uncertain input may vary in an uncertain manner from one 
duty cycle to the next. Thus the sum in eq.( 4.107) has only a single term: 

kn 7rt 
f(t) = ecos r (4.119) 

nf = W = 1, and ~ and Z are known scalars. e is the uncertain load 
amplitude, which varies from one load cycle to the next between the values 
~ - a and ~ +a, according to the convex model of eq.(4.108). We will obtain 
an expression for the least lifetime, N(d), based on the assumption that the 
increment of damage is very small in each duty cycle. 

If ~ 2': 0, eqs.( 4.112) and (4.113) lead to the following expression for the 
maximum increment of damage: 

(4.120) 

and where Z, from eq.(4.109), depends on the model parameters p = (c, k), 
which in turn depend on the total level of damage, d, through eq.(4.106). 
The maximum damage increment, 6, depends on the total level of damage, 
d, only through Z. 

Let primes denote differentiation with respect to d, and approximate 
N(d-£) ~ N(d)-N'(d)£. Now combining eqs.(4.117), (4.118) and (4.120) 
leads to: 

(4.121 ) 

This relation shows how N' scales with ~ + a. The nominal uncertainty
free condition occurs when a = O. Let No(d) be the corresponding nominal 
lifetime. This lifetime No is in fact precisely the value measured in an S-N 
curve. Then (4.121) indicates that: 

- 2v 

N'(d) = (~! a) N~(d) (4.122) 
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N(b..) and No(b..) both vanish at the critical level of damage (N(b..cr ) = 
No(b..cr ) = 0), so an integration on b.. results in: 

- 211 
N(b..) = (~) No (b..) 

{+ fr 
(4.123) 

Thus the least lifetime curves scale inversely as the (2v)th power ofthe quan
tity { + fro This equation establishes a relation between the lifetime (the 
number of duty cycles to failure) in the absence of load uncertainty, No, 
and the least lifetime consistent with the uncertainty in the load history, N. 
Eq.( 4.123) forms the basis of our evaluation of the reliability of the vibrating 
system subject to fatigue failure with uncertain load history. 

4.6.5 Fatigue Reliability With Uncertain Harmonic 
Loads 

In the absence of load uncertainty, the fatigue-related damage level will reach 
its critical value after No duty cycles. This is the laboratory S-N value of the 
fatigue lifetime. When the load history is uncertain, the critical damage level 
may be reached earlier. For the purpose of evaluating the robust reliability, 
we will consider the system to fail if the number of duty cycles to critical 
damage is less than a threshold value: 

(4.124) 

The robust reliability is the least upper bound of the load uncertainty which 
the system can tolerate without violating condition (4.124). Ncr can be any 
value up to No, the number of duty cycles required to accumulate the critical 
level of damage in the absence of load uncertainty. When Ncr < No, we are 
considering as "acceptable", critical damage-accumulation in less than No 
cycles. 

Equating the righthand side of eq.(4.123) to the critical number of cycles 
to failure, Ncr> and solving for (}: leads to: 

(}:=~ - -1 ~ _[(No)1/211 1 
Ncr 

(4.125) 

The robust reliability a is zero if Ncr = No, since No is the number of duty 
cycles required to accumulate the critical amount of damage in the absence of 
load uncertainty. (}: is positive when Ncr is less than No, indicating that the 
system can then tolerate load uncertainty, since reaching the critical damage 
in more than Ncr cycles is not considered as "failure". 

The stress level in each duty cycle varies between { - fr and ~ + (}:. 
Eq.( 4.125) shows that the robustness index varies with the nominal load 
level, though not necessarily linearly since the nominal lifetime, No as well 
as the critical lifetime, Ncr, may also vary with ~. 
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4.6.6 Fatigue Reliability With Complex Uncertain 
Loads 

Now w consider the fatigue reliability with complex uncertain loads. repre
sented)y eqs.(4.107) and (4.108), where nj 2: 1, with one simplification. We 
let ~ = 0, which means that the nominal or "typical" load is zero. Never
thelesswe can still choose one of the wave numbers kn in eq.(4.108) to be 
zero, implying that during each duty cycle the stress varies around a constant 
value possibly different from zero. This constant value is uncertain and free 
to vary from one cycle to another. 

The greatest possible increment of energy dissipated in a single duty cycle, 
eq.( 4.112), is found using the method developed in section 4.5.2. This leads 
to an eigenvalue problem, and the result is: 

( 4.126) 

Let :x denote the maximum eigenvalue referred to in this equation. Combining 
this with eq.( 4.113), the greatest increment of damage in a duty cycle is: 

( 4.127) 

which is analogous to eq.(4.120). Similarly, the analog of eq.(4.121) is: 

N'(!J.) = _ ~ 1 (4.128) 
'Y A" 0'211 

Now, let N~(!J.) be the least number of duty cycles to failure at a reference 
level of uncertainty, (lo. Using eq.(4.128) this can be expressed: 

N~(!J.) = 1 
(4.129) 

Combining eqs.( 4.128) and (4.129) leads to the analog of eq.( 4.122): 

N'(fl) = (~)211 N~(fl) (4.130) 

An integration leads to: 

( 4.131) 

Equating the right hand side of this relation to the critical number of cycles, 
Ncr, leads to the following expression for the robustness index: 

~ (No) 1/211 
0' = 0'0 -

Ncr 
( 4.132) 

If the least lifetime is No duty cycles with load uncertainty 0'0, then a is the 
greatest tolerable uncertainty while requiring that the critical damage level 
not be reached in less than Ncr cycles. 
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Figure 4.8: Two-unit serial network for problem 4. 

4.7 Problems 

1. Consider the one-dimensional undamped linear oscillator defined in 
eq.(4.1) and the failure set of eq.(4.5). Determine the input, failure, 
and overall reliabilities for the following input uncertainty models. (a) 
The instantaneous energy-bound convex model centered at the origin: 

(4.133) 

(b) The Fourier ellipsoid-bound convex model of eqs.( 4.50) and (4.51). 

2. Consider the one-dimensional mass-spring system of eq.( 4.1), driven 
by an input whose uncertainty is represented by a Fourier ellipsoid
bound convex model as in eqs.(4.50) and (4.51). The system fails if its 
cumulative elastic energy in a duration T exceeds the critical value Ecr . 
That is, the failure criterion is: 

k fT 
'2 Jo x~(t)dt ~ Ecr ( 4.134) 

Derive an expression for the robust reliability. 

3. Consider the overall reliability of the one-dimensional mass-spring sys
tem of eq.(4.1), with input and failure uncertainties of eqs.(4.2) and 
(4.5). Show that ii increases with stiffness, k, when wt ~ O. Explain. 

4. Consider the two-unit serial network in fig. 4.8. Each unit is a mass
spring system with mass m and stiffness k. The input to Sl is uncer
tain, and represented by the cumulative energy-bound convex model of 
eq.(4.2). The output of Sl is the input to S2. Both systems start from 
zero initial conditions. Derive an expression for the robust reliability if 
the network fails when the output of S2 exceeds the critical value Vcr. 

5. Consider the symmetric two-mass system in fig. 4.9. The forces applied 
to each mass are Ul (t) and U2(t), and the resulting displacements from 
equilibrium are Xl(t) and X2(t). The input and failure uncertainties are 
represented by the following convex models: 

{u(t): uT(t)u(t)::; an 
{J(t): [t(t) _7]T [J(t) -7] ::; aJ} 

(4.135) 

(4.136) 
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Figure 4.9: Symmetric two-mass oscillatory system for problem 5. 

(a) Derive the over all reliability of the system. (b) What is the rela
tive reliability of the two degrees of freedom, Xl and X2? (Hint: use 
hyperplane separation of the response and failure sets.) (c) The natu
ral modes of motion are coherent and anti-coherent motion of the two 
masses. The eigenvectors are: 

Vl = (1, 1f, V2 = (1, _l)T ( 4.137) 

What is the relative reliability of these two modes? (Hint: use part (b) 
and the orthogonal transformation between modal coordinates and the 
coordinates Xl and X2.) 

6. Use the concept of the reliability of a serial network, developed in chap
ter 3, to provide an interpretation of eq.(4.101). 

7. tModal reliability in shell buckling. (a) Extend example 1 by develop
ing an expression for the reliability of the nth axial buckling mode. (b) 
Repeat (a) where now the convex model of eq.(4.88) is an ellipsoid de
fined by a diagonal matrix W. (c) The matrix W expresses the relative 
uncertainties in the various buckling modes. These uncertainties can 
be reduced in manufacture by controlling the uncertainties. What is 
the optimal, or most efficient, quality specification for the uncertainties 
of the modes? 

8. Reliability of a cart-lifting device. Fig. 4.10 shows a device for lifting a 
self-propelled cart of mass m which moves along the support from C to 
B. A mechanism at joint B"keeps the support arm BC continuously 
horizontal. A storage battery supplies power to an electric motor pro
viding torque T(t) at joint A to balance the moment offorce M(t) due 
to the weight of the moving cart. The mass of the support is negligible. 
A feedback loop regulates the current to keep the total moment at A 
equal to zero. Thus the horizontal arm rises at a constant angular ve
locity iJ = w radians/so However, the total work which the torque motor 
can perform is limited to the energy E~r in the storage battery. The 
cart progresses along the horizontal support with some uncertainty: the 
distance of the cart from point C is set) = vat+a-(t), where Va is known 
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Figure 4.10: Cart-lifting device for problem 8. 

and constant but lo-(t)1 ~ Cl'. The lifting device "fails" if the energy Ecr 
is consumed before the horizontal support has been lifted from () = 0 
to () = (}J radians. Calculate the robust reliability of the device. 

9. Fatigue reliability of a milling tool. A high-speed milling tool rotates 
against a hard metal work piece. The lateral bending loads on the 
cutting tool are far below the yield strength of the material, but lead 
to gradual fatigue, with development of microcracks which can develop 
rapidly when a sudden large load is applied. For the material in ques
tion, the empirical S-N curve is: 

loge = -O.llogNo + 6.9 ( 4.138) 

where No is the number of pure harmonic duty cycles of amplitude e 
required to develop the critical crack density. (The logarithms are to 
base 10). For the same material, the energy exponent in eq.( 4.105) is 
lJ = 5. Show that the robustness index, ii, decreases linearly with the 
load amplitude, if the load cycles are harmonic but with uncertain and 
variable amplitude. 

10. Torque excursions in an impulse. turbine. An incompressible flowing 
fluid does work on the rotor blades of a turbine shaft. In steady flow 
conditions and with some additional assumptions, the torque on the 
shaft resulting from the fluid load is [82, pp.622-625]: 

M = -2pRAv(v cos{3 - u) (4.139) 

where p is the fluid density, R is the radial distance out to the center of 
the fluid jet, A is the cross-sectional area of the jet, v is the input fluid 
speed, u is the blade speed and {3 is the angle between the input fluid 
velocity vector and the blade velocity vector. During abrupt transients 
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in the flow velocity the blade speed will remain nearly constant due to 
the inertia of the turbine, while the torque exerted on the shaft can be 
quite large. Suppose the velocity transients are uniformly bounded, so 
t.heir uncertainty is represented by a uniform-bound convex model: 

V(o:) = {v(t): Iv(t) - vi::; o:} (4.140) 

The turbine will operate safely provided that the torque does not exceed 
a critical value: 

M::; Mer 

What is the robust reliability of the turbine? 

(4.141) 

11. t Modification of problem 10. The rate at which work is done on the 
impulse turbine of problem 10 is: 

dW 
dt = 2pAuv(vcos,8 - u) (4.142) 

The fluid velocity is normally constant at the value v, and the corre
sponding work done in a duration T is Wnom . The turbine is designed 
to tolerate load overshoots, provided they are not too severe, as mea
sured by the work done in excess of the nominal value in a duration T. 
In other words, the failure criterion is: 

WeT) - W nom 2: Wer (4.143) 

Express the uncertainty in the velocity transients with a cumulative 
energy-bound convex model: 

V(o:) = {V(t): 100 (v(t) - v)2 dt::; 0:2 } (4.144) 

Assume the blade speed is constant during load transients. What is the 
robust reliability of the turbine? 
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Chapter 5 

Fault Diagnosis, System 
Identification and Reliability 
Testing 

The analysis of reliability assists the designer to make rational decisions for 
optimizing the performance of his system. However, even in the best of 
circumstances, not everything can be planned or anticipated, and the most 
carefully designed device may go awry if left unattended. Fault diagnosis and 
the monitoring of system integrity are essential for reliable operation. 

In this chapter we will briefly touch on the field of system monitoring and 
evaluation. We will concentrate on the following three tasks: 

• Diagnosis of anomalous modifications of the system. Cracking, break
age, deformation; these are all "failures" in the ordinary sense, and 
the detection and diagnosis of these and other changes is often criti
cal for the graceful recovery or shutdown of the system as well as for 
subsequent repair. 

• Diagnosis of anomalous inputs. Much of our attention in the analysis 
of reliability has been directed to uncertainty in the loads applied to 
the system. We have carefully developed the robust reliability anal
ysis of these uncertainties, and the result is the ability to assure the 
performance of the system for load-uncertainty of a particular class 
and magnitude. In monitoring the system it is necessary to ascertain 
that the inputs indeed conform to the characteristics upon which the 
reliability analysis was performed. 

• Evaluation of the performance of the diagnostic procedure. Anyone can 
formulate a diagnostic algorithm; the tough question is: how good is 
it? How much better is one algorithm than another? Can a particular 
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algorithm be substantially improved, or it is essentially the best of its 
kind? 

A multitude of approaches to these tasks is available and it is far beyond 
the sccpe of this book to review them all; we will not even try. However, 
the concepts of robust reliability are pertinent to these questions, and we 
will make a start in answering them. OUf goal is to emphasize the impor
tance of diagnostic monitoring, and to demonstrate the application of robust 
reliability in the formulation and evaluation of diagnostic algorithms. 

5.1 Benchmark Diagnostic Resolution: 
Simple Examples 

In this section we will use a simple example to intrQduce three basic concepts; 
fractional resolution, benchmark distinguishability and diagnostic reliability. 
A static load is distributed in an uncertain manner over a portion of a beam. 
Measurements are made to determine the extent of the load. Due to the un
certainty in the load profile, the load-extent cannot be unequivocally deter
mined. The fractional resolution is the smallest fractional change in load-size 
which can be unambiguously detected. The fractional resolution is a 'bench
mark' property of the measurement design, a reference point indicating the 
best diagnostic capability inherent in the measurement, like a benchmark 
reference point in land surveying. The robust reliabilty of the diagnosis is 
the greatest value of the load-profile uncertainty parameter consistent with 
an acceptable value of the fractional resolution. 

5.1.1 Formulation 

Structures are sometimes designed to bear substantial loads over restricted 
portions of their surface. This is true, for example, of structures with local 
supports, like cantilevers or simply-supported beams, where loads near a 
support can be substantially greater than away from them. Consider the 
idealized case ofthe simply supported uniform beam in fig. 5.1, which carries 
an uncertain load ¢(x) distributed over an unknown length y. Let us assume 
that the load does not extend beydnd the middle of the beam, so y ~ L/2. 
We will measure the bending moment at the midpoint of the beam, perhaps 
by measuring the curvature, and we wish to determine the size of the loaded 
area. 

The purpose of the measurement is to verify that the extent of the load 
is not excessive, in order to assure the ability of the beam to sustain the 
load. Suppose for a moment that we know the shape of the load profile, 
¢(x), and that the load extends from x = 0 to x = y, but that we do not 
know the value of y except that y < L/2. Measuring the bending moment at 
the midpoint would determine the value of y. However, the load profile ¢(x) 
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Figure 5.1: Beam with uncertain load of unknown area. 
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is in fact uncertain, so we will not be able to determine the precise extent 
of the load. Consequently, we are interested in the resolution with which we 
can determine y based on measuring the moment at :1:= L/2, despite the 
uncertainty in .p( x). In particular, we will determine the smallest fractional 
change in ywhich can be unequivocally established with this measurement. 
Let us denote this fractional resolution by fy. 

If the fractional resolution of y is sufficiently small, then we are satisfied 
with this single measurement for the purpose of establishing the safety of the 
beam. Let us denote the greatest acceptable fractional resolution by fer. The 
diagnostic procedure is acceptable if: 

(5.1) 

We will find that the resolution of y depends on the amount of uncertainty in 
the load profile: fy = fy(a) where a is the uncertainty parameter of the load 
profile. The second part of the analysis is the determination of the robust 
reliability of the measurement: the greatest amount of uncertainty consistent 
with obtaining an acceptable value of the resolution. The reliability of the 
diagnosis assesses the performance of the measurement, and enables compar
ison of alternative measurement designs such as various sensor locations or 
number of measurements. 

So, we must first determine the fractional resolution, fy(a). Then we 
must determine the greatest uncertainty, ii, for which fy (a) does not exceed 
the critical value, fer. 

We will assume that the load uncertainty is specified by an envelope
bound convex model: 

U(a,y) = {.p(X) : 
l.p(x)-¢I ~a, 

¢(x) = 0, 
(5.2) 

where ¢ is the positive nominal load profile and y ~ L/2. The value of the 
uncertainty parameter a is unknown, but for simplicity let us assume that 
a <¢. 
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5.1.2 Single Measurement 

For a given value of the length Y of the loaded region and a specific load 
profile c6(x) E U(o:, y), the bending moment which will be measured at the 
midpoiI.t is: 

1 r 
M¢(L/2) = 2 Jo x¢(x) dx (5.3) 

Since ¢(x) is uncertain, even with fixed y, M¢(L/2) can vary over a range of 
values, which we refer to as the response set: 

R(o:, y, L/2) = {M¢(L/2), for all ¢(x) E U(o:, yn (5.4) 

This set expresses the uncertainty in the measured moment resulting from 
the uncertainty in the shape of the load profile. It is from this uncertainty 
in M¢ that we must establish the relative resolution of y. 

The response set R(a, y, L/2) is simply an interval: all the values from 
the minimum to the maximum which M¢ can attain. These extrema occur 
when the load is extremal throughout its range: ¢( x) = 1> ± 0:. Recalling that 
0: < ¢;, the extremal moments are: 

max M¢(L/2) 
¢(x)EU(a,Y) 

min . M¢(L/2) 
¢(x)EU(a,y) 

So, the response set is the interval: 

(1)+0:)y2 
4 

(¢; _ 0: )y2 

4 

2 

R(a,y,L/2) = ~ [1>-0:, 1>+a] 

(5.5) 

(5.6) 

(5.7) 

We can always distinguish two values of the load-size, Y2 from Yl, if and 
only if their response sets are disjoint. For Y2 > Yl, the response set R( 0:, Y2 ) 
is to the right of R( 0:, yt). So, these response sets are disjoint if the upper 
limit ofR(o:,yd is less than the lower limit ofR(0:,Y2): 

Yf - y~ -4(¢+a) < 4(¢-0:) (5.8) 

This implies that these load-sizes are distinguishable for all load profiles ¢( x) 
if and only if: 

Y2 > v"! + 0: 
Yl ¢ - 0: 

(5.9) 

So, the fractional resolution of y is: 

(5.10) 
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This is the fractional resolution of the size of the loaded region. A small 
value of fy means that the size of the load can be determined very accurately, 
despite the uncertainty in ~(x). The larger the value of fy, the poorer the 
resolution. When the load uncertainty a is small, the fractional resolution is 
small; as c approaches ¢ the fractional resolution increases without bound. 

The reliability of the diagnosis of Y is the greatest value of the uncertainty 
consistent with the required fractional resolution of the size, fer. That is, as 
in the robust analysis of the reliability of a mechanical system, we equate 
fy(a) to fer and solve for a: 

fy(a) = fer (5.11) 

The reliability increases monotonically from zero when the acceptable reso
lution vanishes, to ¢ when fer goes to infinity. 

Before we examine some variations on this example, let us indicate more 
generally what we have done in determining the fractional resolution of the 
load area. The response set 'R(a, y) expands and contracts as the load
size y increases and decreases, respectively. Two load sizes Yl and Y2 are 
unequivocally distinguishable for any load profile ~(x), on the basis of the 
measurement, if and only if the corresponding response sets ~re disjoint: 

(5.12) 

The fractional resolution is obtained from the condition of tangency of the 
response sets. 

The fractional resolution calculated in this way is a benchmark value, in
dicating the inherent diagnostic potential of the measurement. Any pair of 
load sizes Yl and Y2 whose fractional difference is less than fy, are always dis
tinguishable, for any load profiles in the convex model. On the other hand, a 
pair of load sizes whose fractional difference exceeds fy will be indistinguish
able for some allowed load profiles. No amount of "interpretation" of the 
measurement will be able to unequivocally differentiate between them in all 
cases. This type of benchmark diagnostic resolution occurs widely in fault 
diagnosis and in other types of measurements [6]. 

5.1.3 Variable Measurement Position 

It may not be convenient or feasible to measure the bending moment at 
the midpoint of the beam, so we will now consider locating the measurement 
elsewhere on the beam. The magnitude of the moment will vary depending on 
where we measure. The question however is, do the resolution and reliability 
vary with measurement position ~, for [L/2 ::; ~ < L]? We cannot measure 
precisely at the end of the beam, for there the moment vanishes. Similarly, 
the moment near the end will be small and we should expect problems with 
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the diagnosis due to measurement inaccuracy. We will first ignore this, and 
later include measurement error. 

No Measurement Error. The internal bending moment at a position 
~ ~ L/2 resulting from a load profile in U(a, y) is: 

(5.13) 

(We assume, as before, that y ~ L/2.) This is simply M¢(L/2) of eq.(5.3) 
multiplied by a factor. The extremal moments and the response set are 
therefore just multiplied by the same factor. Instead of eq.(5.7), the response 
set becomes: 

(5.14) 

Arguing as in eqs.(5.8)-(5.IO) we see that the fractlonal resolution is the same. 
for any measurement position within the interval [L/2, L). Consequently, the 
reliability of the measurement will not change either. 

Measurement Error. We now consider measurement error. Various 
measurement-error models are conceivable; let us suppose that the measured 
moment could vary due to instrumental error by as much as ±A, regardless 
of the measured value. To determine the fractional resolution of the load size, 
we must establish the condition for disjointness of the response sets in light 
of both the load-profile uncertainty and the measurement error. If Y2 > Yl, 
the disjointness of J?( a, Y2) and R( a, yd requires that the greatest possible 
measurement from the latter set be less that the least measurement from the 
former. Including possible measurement errors, which we take as unfavorably 
as possible, this condition becomes: 

So, the fractional resolution of the load-size is: 

Y2 - Yl 

Yl 

-1+ 

(5.15) 

(5.16) 

(5.17) 

Due to the term (1 - f) 2 in the denominator, this fractional resolution 

will become quite poor - very large - when the measurement is located 
near the end of the beam. Furthermore, if the measurement is close to the 

end of the beam, so that (1 - f) 2 is large, then the fractional resolution 

may exceed the critical value regardless of the magnitude of the uncertainty 
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parameter a. In other words, as the measurement position e moves towards 
L, the resolution deteriorates due to measurement uncertainty even without 
uncertainty in the load profile. In the absence of measurement inaccuracy, 
A = 0, and eq.(5.17) reverts to eq.(5.10) as expected, since then the fractional 
resolution is independent of the sensor location. 

5.1.4 Multiple Measurements 

From eq.(5.13) we learn that bending moments measured at different posi
tions on the righthand side of the beam, outside the domain of the load, are 
simply scaled versions of one another. Multiple measurements of this sort 
can add no new information (ignoring the possibility of measurement noise). 
However, if we are able to measure one moment outside the loaded region 
and one within it, perhaps by embedding strain gauges, the situation is quite 
different, as we will see. 

Let us suppose that we can measure the bending moment at two points 
on the beam, one inside and the other outside the domain of the load, which 
is of length y: 

el < Y and 6> Y (5.18) 

The bending moments at these points can be expressed as: 

M(et) 

M(6) 

1<:1 (1 - ~) x¢(x) dx + 1~ 6 (1- ~J cP(x) dx (5.19) 

l Y (1- ~) xcP(x) dx (5.20) 

We may think of these two measurements as the elements of a vector, 
M = (Ml' M2f. The response set, R(a, Y), is now not an interval like 
eqs.(5.7) and (5.14). Instead, the response set is a region on the M 2-versus
Ml plane. Two load-sizes, Yl and Y2, are always unequivocally distinguish
able on the basis of this measurement vector if their response sets are disjoil).t. 
That is, if eq.(5.12) holds true. If the response sets R(a, Yl) and R(a, Y2) 
are disjoint, then whatever the load profile may be, we can never confuse Yl 
and Y2, since their measurement vectors are never the same. On the other 
hand, if R(a, yt} and RCa, Y2) have some element in common, then when 
that measurement vector is obtained, one can not rationally decide which 
load-size prevails. Disjointness of response sets is the condition for bench
mark distinguishability of load sizes Yl and Y2. Like the benchmark value 
offra<;tional resolution discussed on p.10}, the benchmark distinguishability 
expresses the best resolution which is inherent in the measurement itself. No 
manner of data reduction or intepretation will be able to unequivocally distin
guish all occurrences of load sizes which are not benchmark distinguishable, 
while values which are benchmark distinguishable can in principle always be 
separated. 
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Figure 5.2: Two-dimensional response sets, R(a,y). 

So how much better are two measurements than one? Fig. 5.2 shows the 
outlines of response sets for five different values of load size. These sets are 
of course convex, so they are defined by their boundaries. In all cases the 
measurement locations are ~l = 0.1 and 6 = 0.5. The beam length is L = 1, 
and the parameters of the convex model are ~ = 5 and a = 1. The five values 
of the load size are y = 0.2 at the lower left, and take the values 0.25, 0.3, 
0.375 and 0.4 going progressively to the upper right. 

Consider first y = 0.25 and y = 0.3. The response sets are disjoint, so 
these load-sizes are always distinguishable on the basis of the pair of measure
ments, Ml and M 2 ; these load-sizes are benchmark distinguishable with two 
measurements. Can either of these measurements alone, Ml or M 2 , provide 
unequivocal, benchmark distinguishability of these load sizes? Projecting a 
2-dimensional response set onto one of the axes produces the response set 
for that single measured moment. Projecting R(a, 0.25) and R(a, 0.3) onto 
either the Ml or the M2 axis results in overlapping I-dimensional response 
sets, violating the disjointness condition for benchmark distinguishability, 
eq.(5.12). So, neither measurement alone provides unequivocal distinguisha
bility of these load sizes, while two measurements do. 

But this happy situation does not always prevail, as in the case of the 
large sizes, y = 0.375 and y = 0.4. These response sets show a healthy 
overlap, so these load sizes are not invariably distinguishable with these two 
measurement locations. 

5.1.a Hyperplane Separation 

The diagnostic performance of a single measurement is succintly expressed by 
the fractional resolution, eq.(5.10) without noise or eq.(5.17) with noise. With 
two measurements the situation is more complicated. From fig. 5.2 we can 
determine whether or not particular values of the load-size are benchmark 
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distinguishable, but it does not give an evaluation of the performance for 
arbitrary load-size. 

With just two measurements it would be feasible to graphically determine 
the resolution for each load-size. For instance, R(a,0.25) is disjoint from 
R(a, 0.3), implying that these load-sizes are benchmark distinguishable. One 
could plot response sets for values of Y2 between 0.25 and 0.3 and compare 
them against R(a,0.25) until a response set is found which is tangent to 
R(a,0.25). In this way one determines the benchmark fractional resolution 
at y = 0.25, and similarly at other values of y. 

This procedure becomes more and more cumbersome as the number of 
measurements increases. The response sets have the same dimension as the 
number of measurements, and their graphical representation and comparison 
is awkward at high dimension. 

However, the method of hyperplane separation discussed in chapter 2 
is readily applied here. The response sets are closed and bounded, so the 
disjointness condition for benchmark distinguishability, eq.(5.12), holds if and 
only if there is a hyperplane which separates them. A family of hyperplanes 
is specified by a vector w to which they orthogonal. Response sets R( a, yd 
and R( a, Y2) are disjoint if and only if there is a vector w such that: 

ma.x wT r < 
rEn(a,yI) 

min 117 S 
sEn(a,y,) 

(5.21) 

For the particular example in question here, rand s are 2-dimensional 
vectors whose elements are given in eqs.(5.19) and (5.20). The inner product 
wT r can be presented explicitly as: 

wIM(~l) + w2A1(~2) 

r' CIX.p(X) dx + [Y' C2(X).p(X) dx 
10 16 

where we have defined: 

(5.22) 

(5.23) 

(5.24) 

(5.25) 

The convex model of eq.(5.2) allows .p(x) to vary freely between ¢ - a and 
¢ + a. Consequently, wT r is maximized by choosing ¢( x) to switch between 
these extreme values when the integrand changes sign. For a maximum we 
choose ¢(x) = ¢ + a when the integrand is positive, and ¢(x) = ¢ - a when 
the integrand is negative. The result is: 

1~1 lY' 
CIX (¢ + sgn(cda) dx + C2(X) (¢ + sgn[c2(x)]a) dx 

o ~, 

(5.26) 
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Figure 5.3: Fractional resolution versus load size, with two measurements. 

sgn ( C) = ± I, matching the sign of c. 
The minimum of wT s is constructed similarly, but by choosing the oppo

site direction of sign changes: 

For any given value Yl of the load-size, eq.(5.21) provides the basis for 
numerical determination of the least value Y2, greater than Yl, such that 
the corresponding response sets are tangent. Any value greater than Y2 is 
unequivocally distinguishable from Yl' In other words, (Y2 - yd/Yl is the 
fractional resolution. Fig. 5.3 shows the results of this numerical determina
tion of the fractional resolution with two measurements. The moments are 
measured at positions el = 0.1 and e2 = 0.5. The parameters of the convex 
model are (l' = 1 and ¢ = .5. 

Fig. 5.3 shows that., with t.wo measurements, t.he fract.ional resolution 
varies with the size of the loaded zone. This is unlike the case of a single 
measurement, for which fy is independent. of y, eq.(5.iO). It. is noteworthy 
that, with a single measurement fy= 0.225 for the parameter values we 
have used, which is substantially larger (and hence poorer) than with two 
measurements, as seen by comparing this value with fig. 5.3. "Two is better 
than one." Substantially better, and to continue with the biblical metaphorl 
we might expect continued improvement with three or more measurements, 
though the marginal improvement may be expected to diminish rapidly. 

The curve of fig. 5.3 comprehensively demonstrates the improvement ob
tained by performing an additional measurement. Furthermore, one can 

1 "Two is better than one, ... and the three-fold cord will not quickly break." [( ohelet 
(Ecclesiastes) 4 :9-12. 
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Figure 5.4: Curves of fractional resolution versus load-size, with two mea
surements, for a = 1 (lower) and ct = 1.5 (upper). 

compare alternative measurement locations by constructing such a curve for 
different values of el and 6. 

5.1.6 Reliability With Two Measurements 

Fig. 5.3 shows the variation of the fractional resolution versus the size of the 
loaded region, based on two measurements of the bending moment. These 
measurements, we recall, are to be used to assess the safety of the beam by 
determining whether or not the loaded zone is excessively large. We will 
accept the diagnosis if the fractional resolution of the load-size is less than 
a certain critical value, fer. as we did previously in connection with eq.(5.1) 
in section 5.1.2. If the fractional resolution is sufficiently small, we have 
confidence in the diagnosis. 

So how reliable is the diagnosis when based on two measurements? How 
much uncertainty can it tolerate? How much more reliable are two measure
ments than only one? 

The curve of fractional resolution in fig. 5.3 has been constructed for a 
particular value of the uncertainty parameter, a = 1. In fig. 5.4 we repro
duce this curve, together with a curve 'based on ct = 1.5. The measurement 
positions are still 6 = 0.1 and 6 = 0.5, and ¢ = 5. The layout of these 
curves shows, not unexpectedly, that as the uncertainty increases, the frac
tional resolution deteriorates. This is precisely the information needed for 
constructing the robust reliability of the measurement. 

We reproduce these two resolution curves in fig. 5.5, together with parts 
of five additional curves. The dashed line shows a constant value of fer = 
0.15. We calculate the reliability from the points of intersection of the solid 
fractional-resolution curves with the dashed critical-value line.> For instance, 
the dashed line intersects the a = 1 curve (bottom-most) at y = 0.35. This 
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Figure 5.5: Curves of fractional resolution versus load-size, with two mea
surements, for 0:' = 1, 1.05, 1.1, 1.2, 1.3, 1.4 and 1.5 from bottom to top. 
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Figure 5.6: Robust reliability versus load-size, for two measurements. 

means that the fractional resolution in measuring a load-zone whose size is 
0.35 will exceed fer if the uncertainty parameter exceeds unity. In other 
words, 0:' = 1 is the greatest tolerable uncertainty consistent with fractional 
resolution no greater than fer = 0.15; this is the robust reliability for load
size y = 0.35. We determine the ordinate of intersection for each curve in this 
figure, and construct the robust reliability as a function of load-size. This is 
presented in fig. 5.6. 

Fig. 5.6 indicates that load-zones whose sizes range from about y = 0.15 
to y = 0.4 have robust reliability in the range of ii = 1 to ii = 1.5, when 
two measurements are used. From eq.(5.11) we can calculate the reliability 
for a single measurement, obtaining ii = 0.69 for ¢ = 5 and fer = 0.15. 
The two-measurement diagnosis can tolerate substantially more uncertainty 
without violating. the condition for acceptability of the diagnosis; the extra 
measurement invests the diagnosis with considerably greater robustness to 
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uncertainty, making it more reliable. 

To sun.marize this section, we have evaluated the diagnosis of the size of 
uncertain load profiles with two different concepts: the fractional resolution 
and the robust reliability. The fractional resolution, Jy , indicates the uncer
tainty in determining the load-size which results from the uncertainty in the 
shape of the load profile. The fractional resolution is a "benchmark" charac
teristic of the system. It is evaluated from disjointess of response sets, and 
expresses the diagnostic potential which is inherent in the system, without 
consideration of any specific diagnostic-decision algorithm. The robust reli
ability, Q, is the greatest value of the load-profile uncertainty parameter for 
which the fractional.resolution does not exceed a critical value. Q measures 
the robustness of the diagnosis to profile uncertainty. These quantities, Jy 
and Q, are complimentary tools for assessing and optiIllizing the diagnostic 
performance. We have used them for evaluating the number and deployment 
of measurements. 

5.2 Multi-Hypothesis Diagnosis of 
Anomalous Inputs 

In the previous section we evaluated the diagnostic potential of an uncer
tainly loaded beam, without actually considering any particular diagnostic 
procedure. The fractional resolution is derived from the disjointness criterion 
for benchmark distinguishability. It expresses a resolution-capability inherent 
in the measurements themselves. Now we wish to evaluate the performance 
of realizable diagnostic algorithms, based on testing specific hypothesized 
anomalies against the measurements. 

5.2.1 Multi-Hypothesis Diagnosis 

Let us consider a dynamic system which is excited by an unknown anomalous 
input vector J(t). Denote the resulting measurement vector by Yj(t). The 
aim of the diagnosis is to characterize the input. For instance, it may be 
necessary to verify that the structure and uncertainty of the input convex 
model is consistent with reliability of the system. 

A common and important example is the N-dimensional proportionally 
damped linear elastic system: 

Mx(t) + Cx(t) + Kx(t) = Bu(t) + J(t) (5.28) 

where u(t) is the normal (perhaps noisy) input and J(t) IS an unknown 
anomalous input. The measurement vector is: 

Yj(t) = Hx(t) (5.29) 
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Figure 5.7: Schematic illustration of the nearest-neighbor multi-hypothesis 
decision rule. 

The anomalous inputs J(t) come from a collection of convex models, 
F 1 (Q:), F 2 (Q:), .... The purpose of the diagnosis is to characterize the 
anomaly by deciding from which convex models it could have come. We 
do this by choosing one or more representative elements from each input set, 
and comparing the measured response against the responses calculated from 
each of these "hypothesized" representative inputs. 

Let H denote the collection of all the hypotheses chosen from all the input 
sets. Multi-hypothesis diagnosis is based on the nearest-neighbor decision 
rule: choose the hypothesized input (and hence the input set from which 
it came) whose calculated response is closest to the measurement. That is, 
given a measurement, y, we choose hypothesis h E H if: 

(5.30) 

The operation of this nearest-neighbor multi-hypothesis decision rule is 
illustrated schematically in fig. 5.7. Each ellipse represents a response set, 
'Rn: the set of all measurements obtainable from the input set Fn. The 
dots (.) are calculated responses to hypothesized inputs, and the open circle 
(0) is the measurement. The response sets 'R1, 'R2 and 'R3 are disjoint, so 
the corresponding input sets F 1, F 2 and F 3 are benchmark distinguishable. 
That is, these three types of input anomalies can in principle always be 
distinguished on the basis of the measured bending moment. In addition, 
the measurement belongs to 'R 2, indicating that it has arisen from an input 
in :F 2. The algorithm chooses the closest hypothesis, which in this example 
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Figure 5.8: A false nearest-neighbor multi-hypothesis decision. 

lies in R. 2 , so the algorithm has made the correct choice by assigning the 
measurement to an hypothesis from the same set. 

5.2.2 Criterion for Successful Diagnosis 

Fig. 5.8 illustrates the possibility of false diagnosis by the nearest-neighbor 
rule. In this case the measurement (0) is closest to an hypothesized response 
(.) which lies in a different response set. This collection of hypotheses, H, 
has failed to correctly diagnosis this particular input from Fl. 

It is reasonable to say that anomalous inputs from Fn are correctly di
agnosed by the set of hypotheses H, if every input in F n is assigned to an 
hypothesis from the same set. Note that this idea does not preclude the 
possibility that non-F n inputs are also ascribed to F n. We will develop a 
criterion for deciding if an input set is correctly diagnosed, and this criterion 
must be applied to each input set in order to establish the global success of 
the algorithm. 

We can now formulate a quantitative criterion for correct diagnosis of 
anomalous inputs [7]. Let t and g be two hypothesized inputs in the hy
pothesis set H. Define the minimum relative norm on the response set Rn 
as: 

(5.31) 

If Dn (J, g) is positive, then every measured response in Rn is closer to hy
pothesized response Yg than to hypothesized response Yf. So, if DnU,g) is 
positive, then every input of type n will be ascribed to hypothesis 9 rather 
than to f. If Dn(J, g) is negative, then some type-n inputs will be ascribed 
to hypothesis t, but some may perhaps be ascribed to g. In other words, 
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inputs from F n are correctly diagnosed, in the sense defined previously, if 
and only if, for each hypothesis f which does not belong to F n, there is an 
hypothesis 9 E Fn such that: 

(5.32) 

This means that, for every input from F n, no hypothesis outside :F n will be 
chosen by the multi-hypothesis algorithm. Consequently type-n inputs will 
be correctly diagnosed. 

Various vector norms can be used in eq.(.5.31). The most common choice 
is the euclidean vector norm, II x II = J xT x, which we will use here . 

Expanding the norms of the righthand side of eq.(5.31) in terms of the 
inner product, one finds: 

(5.33) 

(The minimum has been expressed as "minus a maximum".) 
We have reached an optimization problem with convex sets. To simplify 

this optimization, we exploit theorem 1 from chapter 2 (p. 21), which states 
that a linear function has the same extrema on a closed and bounded set and 
on the extreme points of that set. 

If the response set nn is the convex hull of a fundamental response set 
P n , then the maximum in eq.(5.33) can be sought on Pn . Thus eq.(5.33) 
becomes: 

(5.34) 

Furthermore, let the input set F n be the convex hull of a fundamental input 
set <lin. Variation of y on P n is obtained by recognizing that y = y.p is a 
function of the input <p, and by allm ... ·ing ¢ t.o vary on <lin. Thus eq.(5.34) can 
be written as: 

(5.35) 

5.2.3 Example 

Let us now consider the evaluation of a specific multi-hypothesis diagnosis. 
Continuing with the example studied in section 5.1, we will measure the 
bending moment at the midpoint of the beam, and attempt to determine 
the size of the loaded area by testing hypothesized load profiles. The load 
uncertainty is represented by U(a, y) in eq.(5.2), for which the nominal load 
is constant at ¢; throughout the loaded zone, and zero elsewhere, and we 
assume that ¢; > a. We adopt the nominal load as the hypothesized profile. 
That is, for any size Yi, the hypothesized load profile is: 

hi(x) = { 
¢, 

0, 

o :S x :S Yi 

Yi < x :S L 
(5.36) 
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R(a'Yl) n(a, Y2) 
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Figure 5.9: Response sets, each with an hypothesis at its midpoint. 

We will determine the load-sizes Yl and Y2 which the multi-hypothesis al
gorithm will always correctly distinguish, based on the hypothesized load 
profiles, h1(x) and h2(x). 

For any two load-sizes, Yl < Y2, we know that a measurement of the 
bending moment at the midpoint is, in principle, capable of distinguishing 
these values for any load profiles, if and only if (Y2 - yI)/YI exceeds the 
fractional resolution, f y , which we found in eq.(5.1O). When ¢ = 5 and 
a = 1 the fractional resolution is 0.225. Will the multi-hypothesis algorithm 
perform this well? Will the multi-hypothesis decision rule exploit the full 
potential of the measurement, as expressed by the benchmar.k property fy? 

We must evaluate the minimum relative norm for each of the load-profile 
sets: 

min [(Nh2 - M",)2 - (A'h, - Mq,)2] (5.37) 
q,EU(OI,y,) 

M~2 - M~, - 2 max (Mh2 - Ma,) M", (5.38) 
4> EU ( 01 ,y,) 

min [(Ma, - M",)2 - (Mh2 - Mq,)2] (5.39) 
q,EU( 01 ,Y2) 

M~, - Ml2 - 2 max (Ma, - MhJ M", (5.40) 
"'EU(a,Y2) 

Every load profile in U(a, Yl) is assigned to the correct hypothesis, hI, if 
and only if DI > O. This condition assures correct diagnosis of load-size YI, 
but it does not preclude the possibility that some loads of size Y2 will also be 
interpreted, incorrectly, as being of size YI. Correct diagnosis of loads of size 
Y2 is assured if and only if D2 > O. We-need to evaluate both relative norms, 
DI and D 2 , if we wish to establish the complete bi-Iateral correctness of the 
multi-hypothesis algorithm with hypotheses hI and h2 • 

Employing eq.(5.3) for the bending moment at the midpoint we calculate 
the hypothesized responses to be: 

,. 2 
M _ - q;Yi 

h, - 4 ' i = 1, 2 (5.41) 

Fig. 5.9 shows response sets R(a, yd and R(a, Y2) with the hypothesized 
responses at their midpoints indicated by dots (.). 
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[ • [ 
J • ] 

Figure 5.10: Overlapping response sets for which only Yl is correctly diag
nosed. 

Using eq.(5.3) again, and eq.(5.38} for the relative norm, we can express 
Dl as: 

-:/..2( 4 4) -:/..(:1 2) loy, 
D '/' Y2 - Yl 2 '/' Y2 - Yl ,,-( ) d 

1 = - max x'/' x x 
16 <l>EU(a,y,) 8 0_ 

(5.42) 

The coefficient of the integral is positive, so the maximum occurs when ,p( x) = 
¢ + a, resulting in: 

(5.43) 

After some algebraic manipulations one finds that Dl > 0 and Yl is correctly 
diagnosed if Yl and Y2 are related as follows: 

~ 
Y2 > Yl V 1 + -=:;; (5.44) 

When ¢ = 5 and a = 1, we find from this relation that Yl is correctly 
identified in comparison with Y2 if (Y2 - yr)/Yl > 0.183. The hypotheses of 
eq.(5.36) distinguish the lesser from the greater load-size with a fractional 
resolution which is better than the benchmark value of 0.225. How is this 
possible? When the fractional difference, (Y2 -Yl)/Yl, is less than the bench
mark value the response sets overlap; this is the definition of the benchmark 
fractional resolution. This situatiqn is illustrated in fig. 5.10. All the ele
ments ofR.(a,Yl) are closer to II'h, than to Mho, so load-size Yl is invariably 
correctly identified. However, some elements of R.(a, Y2) are also closer to 
Mh, than to M h2 , so load-size Y2 is not always diagnosed properly, and is 
sometimes identified as Yl. 

Now we evaluate the reverse criterion for distinguishability, D2 , which 
can be expressed: 

-:/..2( 4 4) -;-( 2 2) l Y' 
D2 = 'I' Yl - Y2 _ 2 max. IjJ Yl - Y2 x,p( x) dx 

16 </>EU(a,y,) 8 0 
(5.45 ) 
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Figure 5.11: Response sets, each with two hypothesized responses. 

The coefficient of the integral now is negative, so the maximum occurs when 
<jJ(x) = ¢; - ex, resulting in: 

(5.46) 

Again some algebraic manipulations show that D2 > 0 and Y2 is correctly 
diagnosed if Yl and Y2 are related as follows: 

(5.47) 

provided that <jJ > 2ex. When <p = 5 and ex = 1, this relation shows that 
Y2 is always distinguishable from Yl if and only if their fractional difference, 
(Y2 - Yl)/Yl, exceeds 0.291. 

So, with these particular hypothesized load profiles, the fractional reso
lution of the multi-hypothesis algorithm for correctly diagnosing Yl is 0.183, 
while its fractional resolution for correctly identifying Y2 is 0.291. In other 
words, using this particular realization of the multi-hypothesis decision pro
cedure, we are able to unequivocally distinguish two load sizes if and only 
if their fractional difference exceeds 0.291. The benchmark value, we recall, 
is fy = 0.225, for always distinguishing any two load sizes. This multi-hyp
othesis algorithm is slightly poorer than the limiting performance expressed 
by the benchmark resolution. 

Is there a multi-hypothesis algorithm whose performance is closer to the 
benchmark value? How much does the performance improve if we consider 
the use of two hypotheses for each load size, rather than only one? For exam
ple, suppose we employ two hypotheses for each set, one at each extremum, 
rather than a single hypothesis at the midpoint as before. That is, for the 
load-profile set U(ex, Yi) we test the measured moment against each of the 
following hypotheses: 

{
if; - ex, 

0, 

o :s x :s Yi 

Yi < X :s L 
(5.48) 
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{ ¢ + ll, 
0, 

o ::; x ::; Yi 

Yi < X ::; L 
(5.49) 

The responses - bending moments - calculated for these hypothesized load 
profiles are: 

Mhi,l 
(¢ - Il)Y[ 

(5.50) 
4 

M hi ,2 

(¢ + a)y[ 
(5.51 ) 

4 

Two response sets with these hypothesized responses shown by dots ap
pear in fig. 5.11. It is evident that these response sets will be successfully 
distinguished by this multi-hypothesis algorithm provided the sets are dis
joint. In other words, the fractional resolution of this algorithm will equal 
the benchmark performance for two measurements. No further improvement 
can be achieved by altering the two hypotheses. 

5.2.4 Robust Reliability 

We will now study the reliability of multi-hypothesis diagnosis of input anom
alies. The basic question of robust reliability is: how much uncertainty can 
the diagnosis tolerate without failure? 

As before, a measured response is denoted Yf, where the anomalous in
put function f(t) belongs to one or more of the collection of input sets, 
.FI(Il), .:F2(1l), .... Representative "hypothesized'.' inputs, hI, h2, ... , are 
chosen from all the input sets and stored in the set H. The measured re
sponse is compared in eq.(5.30) against each of the hypothesized responses 
to find the nearest hypothesis, thus determining the set which is selected as 
responsible for the input. 

The positivity of the minimum relative norm, eq.(5.32), which must hold 
for each input set .:F n (ll), defines the condition for no-failure of the multi
hypothesis diagnostic algorithm. The robust reliability is the greatest value 
of the uncertainty parameter, ll, consistent with this condition. 

We can succintly express the r.obust reliability of the multi-hypothesis 
diagnosis as follows: 

a = sup {ll: D,,(ll) > 0, for all n} (5.52) 

The robust reliability is the greatest value of the uncertainty parameter which 
is consistent with correct diagnosis of each of the input sets. (We have written 
Dn (a) rather than D" (I, g) as previously, to stress the dependence of the 
minimum relative norm on the uncertainty parameter, rather than on the 
hypotheses. ) 
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Figure 5.12: Ratio of reliabilities for two- and one-hypothesis algorithms. 

Example 1 Consider the example of section 5.2.3, with a single measure
ment of the bending moment at the midpoint of the beam, and a single 
hypothesized load profile, eq.(5.36), for each input set: Eq.(5.44) is the con
dition for DI{a) > 0, whiie eq.(5.47) is required for D2 (a) > O. What is the 
greatest uncertainty consistent with both conditions? For Dl we obtain: 

(5.53) 

Any larger value of a would result in a negative value for D1 . For D2 we find 
the greatest value of the uncertainty parameter is: 

(5.54) 

With the condition that Y2 > Yl, it results that al > a2. Consequently a2 
is the greatest value of uncertainty consistent with correct diagnosis of both 
sets. So, the robust reliability of the multi-hypothesis diagnosis with one 
hypothesis for each input set is: 

(5.55) 

The diagnosis will sometimes fail for any greater value of uncertainty. This 
relation shows that the reliability of the diagnosis depends on the ratio of the 
load-sizes which are to be distinguished. When the load-sizes are nearly the 
same, and Yl is only slightly less than Y2, the reliability is low: even small 
uncertainty in the load profile can lead to failure of the diagnosis. On the 
other hand, when yI/Y2 «: 1, greater profile-uncertainty can be tolerated. _ 

Example 2 Now consider the extension of the previous example to the case 
of two hypothesized load profiles for each input set, specified by eqs.(5.48) 
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and (5.49). We found that these hypotheses will correctly diagnosis the 
input sets provided that the response sets are disjoint. So, the condition for 
correct diagnosis is simply the disjointness condition, eq.(5.8) or, equivalently, 
eq.(5.9)· 

Y2 > J~+ a 
Yl tjJ- a 

(5.56) 

The robust reliability with this choice of hypothesized profiles is the upper 
bound of the values of the uncertainty parameter for which this relation holds: 

(5.57) 

As in the one-hypothesis case, the reliability increases as the ratio of the 
load-sizes decreases: small differences are less reliably diagnosed than large 
differences. Furthermore, comparing eqs.(5.55) arid-(5.57), we see that the 
two-hypothesis algorithm is always better than the one-hypothesis case: 

(5.58) 

for all values of Yl < Y2. The ratio of (i2 hyp to (i 1 hyp is shown in fig. 5.12. 
The two-hypothesis algorithm is much more reliable than the one-hypothesis 
case for large size-differences, yt/Y2 ~ 1. At the other extreme, when distin
guishing between similar load-sizes, these algorithms have nearly the same 
reliability. _ 

5.3 Least-Squares Estimation 

Many fault-diagnosis schemes are based on least-squares parameter estima
tion, in which an unknown vector x is determined from a set of linear algebraic 
equations: 

Ax = b (5.59) 

The matrix A and the vector b are known, though perhaps subject to uncer
tainty. There may be a unique value of x which exactly satisfies eq.(5.59). 
Or these equations may be "over-determined" and contain conflicting infor
mation, or they may be "under-determined" and insufficient to fix a unique 
value for the vector x. In any case, a vector is sought which is small in some 
sense and which minimizes the squared-error of the equation. This method 
has a long history dating back to Gauss [46] and Legendre [91], and there 
are many variations, some based on the use of generalized inverses [56], or 
employing regularization methods [97] or other techniques [39, 42, 63, 87] to 
obtain a "reasonable" solution. 

In this section we will examine the reliability of fault diagnosis based on a 
simple least-squares solution method. The purpose is primarily to illustrate 
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several applications of robust reliability analysis. We trust the reader will 
be able to apply these techniques to his own problems. The linear relation 
(5.59) arises in a wide range of applications. We will motivate it here based 
on uncertain inputs to a dynamic system, and in section 5.4 we will derive a 
least-squares problem from modal measurements for crack diagnosis. 

5.3.1 Formulation of the Least-Squares Problem 

Consider a multi-dimensional linear dynamic system with state-vector yet) 
and uncertain scalar input u(t}: 

yet) = By(t) + Cu(t), yeO) = 0 (5.60) 

Let us represent the input in an interval [0, T] by a truncated Fourier series 
with unknown coefficients: 

u(t) 
K mrt 

= LxncoS T 
k=1 

xT ret) 

(5.61 ) 

(5.62) 

where 'Y(t) is a vector of cosine functions and x is the vector of unknown 
Fourier coefficients. We wish to detect anomalies in the input spectrum, x, 
by measuring the response, which can be written: 

Q(t) 

yet) 
'-[1-0-: -eB-(-t--T-'; ..... c-'Y-T -( r-)-d-T"""If x 

(5.63) 

= Q(t)x (5.64) 

The matrix Q is known and can be calculated from our prior information 
about the system. The response y is measured and the spectrum x is sought. 
We may in fact measure the output at r different time instants tl, ... ,tr and 
concatenate the responses in a single vector: 

b (yT(tl)' ... , yT(tr»)T (5.65) 

= [Q(td, ... , Q(tr)f X (5.66) , , 
'" A 

= Ax (5.67) 

We have now formulated a set of linear equations in the form of (5.59), which 
is the starting point for least-squares analysis. 

Eq.(5.67) is "solved" in a least-squares sense by multiplying on the left 
by a generalized inverse2 of A, denoted A+: 

(5.68) 

ZThe generalized inverse A + is defined in such a way that x = A + b minimizes the norm 
of Ax - b. The simplest case arises if AT A is non-singular, for then A+ = (AT A)-l AT. 
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How do the uncertainties on the righthand side propagate to the left, and 
how do they influence the diagnosis of anomalies in the input? How reliable 
is the diagnosis? 

5.3.2 Variation of the Least-Squares Solution 

The measurements b are uncertain, but we will suppose that A and A+ are 
precisely known. In section 5.4 we will consider uncertainty in the coefficient 
matrix A. 

Let us suppose that the measurements cluster around the correct value, 
h, in an ellipsoid whose shape is determined by the positive definite, real, 
symmetric matrix W: 

(5.69) 

The uncertainty parameter a determines the size of the set. In the reliability 
analysisofleast-squares estimation we ask how large a can be without causing 
failure of the estimate. 

One sense in which the least-squares estimate can fail is by magnifying 
the measurement-uncertainty into large variation of the solution itself. This 
is quite a common source of difficulty in least-squares estimation. The in
stability or 'ill-posedness' of least-squares (and other) inverse problems is a 
major area of research [65, 97). 

The solution, x, will change as the measurement varies on the set B(a). 
One can assess the stability of x as the difference between the greatest and 
least values of the euclidean norm of x. This involves optimizing a quadratic 
function - the norm - on the set B. A simpler and often just as useful 
assessment is the extremal variations of the projection of x along an arbitrary 
direction, represented by a unit vector 1/;. This requires optimizing a linear 
function - the projection - on B. The projection is related to the norm as: 

x T 1/; = [[xll·II1/;11 cos Lex,?jJ) (5.70) 

where L(x,?jJ) is the angle between the two vectors. In the course of our 
analysis we will find the vector ?jJ which produces the greatest variation of 
the projection. . 

The projection defines a failure criterion: the estimate is unacceptable if 
the variation of the projected solution exceeds a critical value, Per: 

(5.71) 

Using relation (5.68), the projection of the solution along ?jJ is 'ljJT A+b. 
So, the optimization problem we face is: 

opt ?jJT A + b subject to bE B( a) (5.72) 
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t/JT A + b is a linear function and B is a closed and bounded convex set, so the 
extrema occur on the boundary of B, as explained in theorem 1 of chapter 2 
(p.21). Consequently, (5.72) can be written: 

opt 1jJT A+b subject to (b - b)T W (b - b) = a 2 (5.73) 

A change of variables is useful, defining {3 = b - b. Following example 5 of 
chapter 2 (p.21) we find the extremal values of t/JT x to be: 

opt t/JT x =t/JTA+b±aJ1jJTA+W-1A+Tt/J 
hEB(,,) 

(5.74) 

The range of variation of the projection is simply 2aVt/JT A+W-l A+T t/J. 
The projection direction is represented by 1jJ, which is a unit vector, so the 
quadratic term t/JT A+W:-1A+T 1jJ can be as large as 'the greatest eigenvalue 
of the positive semi-definite, real, symmetric matrix A+W-1 A+T. We will 
denote this maximal eigenvalue by >'max. This extremal value is obtained 
when t/J is proportional to the corresponding eigenvector [56]. So, the greatest 
possible variation of any projection of x is: 

max [max t/JT x - min 1jJT x] 
11"'11=1 bEB(a) bEB(a) 

Jmax eig A+W-1A+T (5.75) 

2aV>'max (5.76) 

This relation shows how the measurement uncertainty, expressed by a, prop
agates to the estimated spectrum, x. The measurement uncertainty is am
plified or compressed, depending on the value of Amax. We can calculate 
>'max based on prior information, so the sensitivity of the estimate can be 
anticipated before measurement. 

Employing eq.(5.71), the condition for no-failure of the least-squares es
timate becomes: 

2aV>'max < Per (5.77) 

Expressing this as a reliability, the limiting value of the uncertainty parameter 
is: 

~Per 
a= -=== 

2V>'max 
(5.78) 

A large value of >'max, which amplifies the measurement uncertainty, implies 
low reliability. Only small measurement uncertainty can be reliably tolerated 
when>'max is large. 

5.3.3 Estimating a Spectral Centroid 

A shift in the input spectrum x defined in eq.(5.62), either to lower or higher 
frequencies, is indicative of a fault. Spectral shifts can often be detected by 
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estimating the centroid of the spectrum. Our results so far are immediat.ely 
applicable to evaluating the reliability of estimating the centroid of the input 
spectrum. 

The centroid of the spectral vector x, which has K elements, is: 

(5.79) 

This can be represented as a projection of x. Define a vector 1 E ~K whose 
elements are all ones. Then: 

1 
e = -lTx 

K 
(5.80) 

The variation of the estimated centroid is evaluated from eq.(5.74) by 
choosing 'Ij; = :k 1, resul ting in: 

(5.81) 

Fractional Variation. The fractional variation of the centroid estimate 
can be as large as: 

2a\hT A+W- 1A+T l 
f = tT.4.+b 

(5.82) 

If we require that this fractional variation be no larger than a critical value, 
fer, the reliability of the estimate is: 

~ f, tTA+{; 
Ct = cr -2a-Vrl=;;T""A=+=W=-=1 A=+;;:::T=l (5.83) 

Hypothesis Testing. One may wish to detect specific spectral shifts 
with known associated centroid changes. This can be formulated as an hy
pothesis test. Consider Nh evenly spaced hypotheses for the value of the 
centroid. The ith hypothesis is that the centroid equals Ci: 

Hi: (5.84) 

The hypotheses are arranged in increasing order, C1 < ... < C N h' and the 
increment between hypotheses is constant: 

~ _ eNh - C1 

C - Nh -1 (5.85) 

Given a measured centroid e = :k 1 T A + b, we choose the closest hypothe
SlS. That is, choose hypothesis Hk if: 

Ie - Ckl = m.in Ie - cil (5.86) , 
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If hypothesis Hi holds then the correct centroid is -ktT A+fj = Ci, but the 
measurement can deviate from this by as much as: 

(5.87) 

due to uncertainty in b. The multi-hypothesis decision will err if the measure
ment deviates from the correct value by more than t::.c/2. The reliability of 
the diagnosis is the greatest uncertainty consistent with no-failure of the deci
sion. This is obtained by equating the greatest deviation of the measurement 
to the greatest acceptable error, and solving for a: 

~ H( CN" - Cl) 
a- --------~~========~ 

- 2(Nh - l)v'tT A+W-IA+Tt 
(5.88) 

This relation shows that, for a given range of centroid values, CNh - Cl, 

the reliability decreases i.i:J.versely with the number of hypotheses which are 
tested. There is a trade-off between reliability and resolution: as the number 
of hypotheses which are tested increases, the amount of tolerable failure-free 
uncertainty is reduced. 

5.3.4 Reliability of "Regularized" Solutions 

The starting point for least-squares analysis is the set of linear algebraic 
equations Ax = b. The least-squares approach provides a unique "best" 
solution, even when the equations are either conflicting or under-determined, 
by seeking an x which minimizes the quadratic form: 

J = IIAx - bll 2 (5.89) 

It often happens that the solution to this least-squares optimization is very 
sensitive to noise: small fluctuations in A or b can result in large variation 
in x. However, the solution can be stabilized or "regularized" by employing 
prior information to limit the variation of x. 

For instance, suppose that prior information indicates that the solution 
should be something like x. In this case, one can try to bias the solution in 
favor of x, while still exploiting the information in the relation Ax = b. One 
way is to search for an x which minimizes: 

(5.90) 

where,), is a positive constant which weights the preference for x = x against 
the preference for Ax = b. The choice of')' determines how strongly the prior 
information "pulls" the solution away from the nominal least-squares case. 

There are various considerations for choosing the weighting term,), [70, 
71]. In general, one purpose of the right-most term in eq.(5.90), the "regu
larizer", is to enhance the stability of the solution. We can express this in 
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the spirit of robust reliability, and ask for the value of, which results in the 
most reliable solution: the solution whose variation due to uncertainty in b 
is minimized. 

Opt ;mal solutions are found from the condition: 

which leads to the relation: 

0= oJr 

ax (5.91) 

AT A is a real symmetric matrix, so it is diagonalized by an orthogonal matrix, 
V: 

(5.93) 

where A is diagonal. For simplicity we will assume that AT A is positive 
definite and hence that all the diagonal elements are positive: 0 < Al ~ . 
. . . ~ AN. Employing eq.(5.93), one can re-arrange eq.(5.92) as: 

[A -,IJ VT x = VT ATb -,VTx (5.94) 

We will assume that the weighting term is not an eigenvalue: 

, :f:. Ai, i = 1, ... , N 

So the solution of (5.94) is: 

x = V [A -1 - ~I] [VT ATb -,VTx] 

[ V A -1 VT - ~ I] AT b - [,VA -1 VT - I] x 
, ~ 

y 

C 

which defines the matrix e. 

(5.95) 

(5.96) 

(5.97) 

Now, suppose the uncertainty in b is represented by the spherical set: 

(5.98) 

The maximum variation of projections of x along any direction 'I/J is expressed 
by eq.(5.76), where Amax is the greatest eigenvalue of the matrix eeT . 

U sing the relation: 
(AT A)-1 = VA -1VT 

one can obtain the following expression for eeT: 

[VA- 1VT - ~I] AT A [VA- 1VT - ~I] 

V [A -1 - .3. I + ~ A] VT , ,2 

(5.99) 

(5.100) 

(5.101) 
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Figure 5.13: J.L versus A for 'Y = 5. 
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This shows that the eigenvalues of ceT are precisely the diagonal elements 
of the diagonal matrix in square brackets in this expression, which we denote: 

.( ) _ ~ _ ~ Ai _ b - Ai? 
/L.'"{ - , + 2 - 2 \ ' 

Ai {{ { Ai 
i=l, ... ,N (5.102) 

So, for fixed weighting factor {, the greatest variation of the projected 
solution for any projection direction is: 

max [max 1j;T :r - min 'lj!T x] 
1I<t>1I=1 hE13(a) b€B(a) 

2avmax eig CCT (5.103) 

(5.104) 

To optimize the reliability of the regularized least-squares solution, we must 
choose { to minimize the maximum eigenvalue. In other words, we must 
solve the following optimization problem: 

(5.105) 

The partial derivative of /L with respect to .A is: 

Op. ,\2 - {2 

o.A - >:2{2 
(5.106) 

In other words, for fixed 'Y, /Lib) increases with the difference between { and 
.Ai, as shown in fig. 5.13. Consequently, the inner maximum in (5.105) occurs 
at either the least or the greatest eigenvalue: 

(5.107) 

This furthermore implies that the value of'Y which minimizes the maximum 
will lie between .AI and .AN. As 'Y increases, J.Ll increases and /LN decreases, 
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while if I decreases the reverse situation holds. In other words, the value 
of I which minimizes the maximum of {PI, P2} is the value of I at. which 
equality holds: 

J.l1 = J.lN or (5.108) 

Solving for I and choosing the positive root, one finds that the optimal 
weighting factor, which makes the regularized least-squares solution least 
sensitive to uncertainty in b, is the geometric mean of the least and greatest 
eigenvalues of AT A: 

(5.109) 

The greatest eigenvalue of Car for this choice of the regularization weighting 
factor is: 

m?J(p; (5.110) 
• 

( 1 1)2 
A - VJ:N (5.111) 

Combining this with relation (5.104) leads finally to an expression for the 
greatest variation of the regularized projected solution, for any projection 
direction: 

[ T . T] (1 1) max max 'I.jJ x - mIll 'I.jJ x = 20' -- - --
11"'11=1 bE13(a) bE13(a) A VJ:N (5.112) 

Our development, from eq.(5.96) on, has assumed that I > O. The ordi
nary least-squares solution arises when I = 0, for which we must return to 
eq.(5.92). Now instead of eq.(5.97) we have: 

so ceT now becomes: 

x = (AT A)-IAT b ----......-. 
c 

(5.113) 

(5.114) 

whose eigenvalues are 1/ AN ::; ... ::; 1/ AI. So the greatest variation of the 
unregularized projected solution becomes, as in eq.(5.103): 

max [max 'l.jJT x - min 1/JT x] = 20' IT 
11"'11=1 bEB(a) bE13(a) V ~ (5.115) 

The ratio of the maximum regularized projection, eq.(5.112), to the un
regularized case, eq.(5.115), gives some indication of the best enhancement 
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of the stability achievable by this procedure: 

p (5.116) 

(5.117) 

This varies from zero to unity, depending on the ratio of the least to the 
greatest eigenvalues of AT A. We note that, when AT.4 is very ill-conditioned, 
so that >'d AN ~ 1, the regularization provides little reduction in the range of 
variation of the solution, if the uncertainty in b is represented by the spherical 
uncertainty-model of eq.(5.98). 

5.4 Multi-Hypothesis Diagnosis· gf a Crack 

Measurement of eigenvalues and mode shapes 'can be used in many ways to 
detect and diagnose cracks in elastically vibrating structures. In this section 
we will evaluate the robust reliability of a multi-hypothesis algorithm for 
diagnosing small cracks which is based on modal measurements. 

The basic structure of the diagnosis is again the estimation of the vector 
x from a relation of the form Ax = b, where uncertainties are associated with 
both A and b. The multi-hypothesis algorithm however is very different from 
the least-squares approach discussed in section 5.3. 

Cracks usually open and close during each cycle of vibration, resulting 
in quite complicated time-varying dynamical effects. However, much experi
mental and theoretical work has shown that quite often a small crack can be 
represented fairly well as though it produced a constant reduction in stiffness 
at the site of the crack. We will adopt this approach here. 

5.4.1 The Eigenvalue Equation 

The eigenvalue equation for mechanical vibration relates the mass and stiff
ness matrices, M and K, via an eigenvector (or mode-shape vector) yand 
an eigenvalue A (which is the square of a natural frequency): 

(),M + K)y = 0 (5.118) 

M and K are real, symmetric, positive definite3 N x N matrices, where N 
is the number of degrees of freedom of the dynamical model. N is often 
quite large, in which case it is not feasible to measure all the modes. We will 
assume that L modes are measured, and that the mode shapes are denoted by 
the columns of a matrix Y = [Yl, ... , YL] and the corresponding eigenvalues 

3 M will be positive semi-definite if rigid body degrees of freedom are included in the 
equations of motion. 
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are stored in the diagonal matrix A = diag(..\l' ... , ..\L)' Eq.(5.118) can be 
expressed for all L measured modes as: 

(MA+K)Y = 0 (5.119) 

The mass matrix M is known at least approximately and the eigenvalues 
A and mode shapes Yare measured, while the stiffness matrix J( must be 
up-dated to locate and diagnose any cracks which may be present. In other 
words this relation is of the form Ax = b where A and b, based on M, A and 
Y, are measured but uncertain, and x, based on K, must be estimated. 

5.4.2 The Multi-Hypothesis Algorithm 

Direct inversion of eq.(5.119) to find the stiffness matrix K tends to be un
stable to noise in the measured mode shapes, Y. (We will discuss the source 
of this ill-conditioning in section 5.6.) Rather than.ell1ploying a least-squares. 
method for inverting this relation, we will seek to identify the stiffness changes 
by testing a range of hypothesized stiffness matrices. 

The crack-free stiffness matrix is K o, and we postulate a collection of Nh 
hypothesized cracks, each represented by a modification Kh to the nominal 
stiffness matrix: 

(5.120) 

For local stiffness changes these hypothesized matrices can often be quite 
sparse and simple. A typical form for the hypothesized modifications is: 

(5.121) 

where kh is a scalar stiffness parameter and Uk is a vector which indicates 
the location of the crack. For simple stiffness modifications such as these, a 
reasonably comprehensive list of hypotheses is not too long and can be tested 
by the multi-hypothesis method. In light of eq.(5.119), the matrix (M A + 
Ko + Kn)Y will be nearly zero if the nth hypothesis is nearly correct, and 
large otherwise. The multi-hypothesis algorithm for identifying the stiffness 
matrix is to adopt the nth hypothesis if: 

II(M A + Ko + Kn)YII = min II(M A + Ko + Kh)YII 
h 

(5.122) 

where IIAII is the euclidean norm of the matrix A, which is the sum of the 
euclidean norms of the columns of A = (aI, ... , aLl: 

L 

IIAI12 = Lar ai (5.123) 

For notational convenience let us define the nominal failure-free matrix 
from the lefthand side of eq.(5.119): 

J o = (M A + Ko)Y (5.124) 
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whose columns we denote as iO,l, ... , iO,L. Similarly, define the hth hypoth
esized modification of Jo as: 

(5.125) 

whose columns are iO,i + KhYi for i = 1, ... , L. The multi-hypothesis algo
rithm, eq.(5.122), can be expressed as follows. Choose the nth hypothesis 
if: 

(5.126) 

L 

~n Lilia,; + Khy;11 2 (5.127) 
;=1 

5.4.3 Performance Criterion for the Diagnosis 

Eigenvalues can, in some circumstances, be measured quite accurately. Fur
thermore prior information can be brought to bear in formulating an un
certainty model for the mode shapes. We will consider an envelope-bound 
convex model for the mode-shape uncertainty, in which the fractional varia
tion of each mode shape is bounded by the uncertainty parameter a: 

where fii is the anticipated form of the ith mode shape. Let Y = [fi1' ... , fiLl· 
Then we can write Y = Z + Y where Z is the deviation of Y from the 
anticipated modal matrix Y. Now U(a) can be written: 

U(a) = {Y = Z + Y: IZij I ~ a lfi;j I, i = 1, ... , L, i = 1, ... , N} 
(5.129) 

The capability of the multi-hypothesis algorithm to distinguish between 
hypothesized cracks is limited by the variation of h due to mode-shape 
uncertainty. The greater the variation of h, the fewer is the number of hy
potheses which can be unequivocally distinguished. This suggests a criterion 
for evaluating the reliability of the diagnostic algorithm. 

The matrix h can be written: . 

(5.130) 

where the variation of Jh due to uncertainty is concentrated in the term 
KhZ, where Z varies around the zero matrix. For a given set of hypothe
sized stiffness matrices, K 1 , ... , KNn , let us suppose that the norms IIJo + 
K 1YII, ... , IIJo + KNn YII are spaced so that the minimum difference between 
them is d cr . The multi-hypothesis algorithm will tend to perform satisfac
torily if IIKhZl1 varies by no more than about d cr/2 for h = 1, ... , Nh. In 
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other words, we will adopt the follo\"'ing condition for failure of the diagnostic 
algorithm: 

max IIKhZII- min IIKhZII > .6.2cr , for some h = 1, ... , Nh (5.131) 
ZEU(c) ZEU(a) 

The reliability of the diagnostic algorithm is the greatest value of the uncer
tainty parameter, a, consistent with no-failure. This is not the only possible 
criterion, but it is both plausible and tractable. 

5.4.4 A Useful Theorem 

We will now present a theorem which will be useful in evaluating the re
liability of the multi-hypothesis diagnosis. We must precede the theorem 
with a simple lemma, based on the Cauchy inequality, which is discussed in 
example 2 of chapter 2 (p.18). 

Lemma 1 For any vector v, the euclidean norm of v can be expressed as an 
extremal projection along a unit vector. That is: 

where Ilvll = VvTv. 

max 1/;T V = Ilvll 
1Iv'1I=1 

Proof. The Cauchy inequality states that 1jJT v is bounded as: 

(5.132) 

(5.133) 

with equality if 1jJ is parallel to v. The vector 1jJ is constrained to the unit 
sphere and thus can lie in any direction. Hence 1jJ can be chosen parallel to 
v. Consequently, equality holds in (5.133) for this choice of 1jJ, whose norm 
equals unity. _ 

Theorem 1 Let f( u) be a continuous vector function defined on a closed 
and bounded set U. The maximal value of the euclidean norm of f on U can 
be expressed as an extremal projection along a unit vector: 

max max 1jJT feu) = max Ilf(u)11 
11"'11=1 uEU uEU 

(5.134) 

Proof. Since f is continuous and U is closed and bounded, f( u) is bounded 
on U and, for any vector 1/;, the function 1jJT feu) has a minimum and a 
maximum value on U. 

Let M denote the double maximum on the lefthand side of (5.134). Sup
pose there is an element u E U such that: 

Ilf(u)11 > M (5.135) 
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Then, by lemma 1: 

Consequently, 

max ,pT I(u) = II/(u) II 
11>,1111=1 

max 'If;T I(u) > M 
11"'11=1 

which is a contradiction. Hence supposition (5.135) is false and so: 

max II/(u) II ~ M 
uEU 
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(5.136) 

(5.137) 

(5.138) 

for all u E U. We can immediately see that this cannot be a strict inequality. 
U is closed and bounded so the maxima in M exist. In other words, there is 
a it E U and a II¢II = 1 such that: 

~T 

M = 'If; I(u) 

But, employing lemma 1: 

Hence: 

;jT I(u) < max TpT I(u) = II/(u)11 
- 11"'11=1 

M ~ ~Eaa:II/(u)1I 

Relations (5.138) and (5.141) together prove eq.{5.134). _ 

(5.139) 

(5.140) 

(5.141) 

Example 3 Let us consider an example of theorem 1. Let I{ u) = u and let 
U we an ellipsoidal set of vectors.: 

(5.142) 

where W is a positive definite, real, symmetric matrix. We will find the 
maximum norm of I( u) on U first by using the method of Lagrange multipliers 
and then by employing theorem 1. 

(1) Using Lagrange optimization. To maximize II/(u)11 on U we must solve 
the following optimization problem: 

(5.143) 

The extrema occur on the boundary. Adjoining the constraint to form J = 
uT U + A(a2 - uTWu), the condition for an extremum is: 

which implies: 

0= oJ 
ou 

(I - AW)U = 0 

(5.144) 

(5.145) 
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In other words, the optimal solutions occur when u is an eigenvector of W 
and when 1/>. is the corresponding eigenvalue. Denote the eigenvalues of 
W by /11 ::::; ... ::::; /1N. They are all positive since W is positive definite. 
Employing the constraint one obtains the final result: 

0: 
maxllf(u)1I = ~ 
uEU y/11 

(2) Using theorem 1. We must evaluate the double maximum: 

max maxt{;T feu) 
1111>11=1 uEU 

Consider first the inner maximum, for fixed "p: 

(5.146) 

(5.147) 

(5.148) 

This is the optimization of a linear function on U, unlike (5.143) which op
timizes a quadratic function.4 The maximum again occurs on the boundary. 
Adjoining the constraint, which is now an equality, define: J = "pT u + >.( 0:2 _ 

uTWu). Eq.(5.144) is again the condition for an extremum, which now im
plies: 

O="p - 2>.Wu (5.149) 

Employing the constraint one finds the maximum projection along "p to be: 

(5.150) 

We now proceed to the outer maximization. Since"p is a unit vector, the 
radical in eq.(5.150) varies over the field of values [56] of W- 1 , that is, be
tween the least and greatest eigenvalues of W- 1, which are 1/ J.lN and 1/ J.l1, 
respectively. So the outer maximum occurs at the greatest eigenvalue of 
W- 1 : 

just as in eq.(5.146). _ 

max max"pT feu) = ~ 
11"'11= 1 ueU $I 

5.4.5 Reliability of the Diagnosis 

(5.151) 

We are now in a position to evaluate the reliability of the multi-hypothesis 
diagnosis algorithm, eq.(5.122) or eq.(5.126). The algorithm is considered to 
fail if inequality (5.131) holds for some value of the hypothesis-index h. Let 
V represent the righthand side of this relation: the maximum variation of the 
norm of the uncertain term, KhZ. This variation depends on the uncertainty 
parameter, 0:, and the robust reliability of the algorithm is the greatest value 

4It is sometimes easier to optimize a linear function than a quadratic one, as we will 
see in our subsequent example in section 5.4.5. 
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of a consistent with no failure. We evaluate the reliability by equating V (a) 
to the critical value, t1cr/2, and solving for a. In other words, the reliability 
a is the solution of: 

V(a) = fj.cr 
2 

(5.152) 

Theorem 1 will be useful in evaluating V(a), which we now proceed to do. 
We must determine the least and greatest values of the norm IIKhZjJ, 

which depends on the uncertain quantity Z, whose variation is expressed by 
the convex model of eq.(5.129). The minimum is clearly zero since Z varies 
around the zero matrix. Now for the maximum. 

KhZ is an N x L matrix, but we can concatenate its columns into a single 
long vector, which we denote as follows. The ith column of Z is Zi, so the 
ith column of KhZ is KhZ;. Consequently the vector form of KhZ becomes: 

(5.153) 

The correspondence between our optimization problem and theorem 1 is ob
tained by replacing the uncertain quantity u by Z, and the vector function 
f(u) by vec(KhZ): 

(5.154) 

The euclidean norms of the vector vec(KhZ) and of the matrix KhZ are 
identical, as seen from eq.(5.123). 

Theorem 1 states that the maximum norm of vec(KhZ) can be evaluated 
as: 

(5.155) 

We begin with the inner optimization, for which we must find the extremal 
values of '1f;T vec(KhZ). Now '1f; is a vector with N L elements, but we can break 
it into L blocks, '1f;T = (lg, ... , T/.{), and express t/JT vec(KhZ) as: 

L 

'1f;T vec(KhZ) = L t/Jt KhZj (5.156) 
;=1 

We must ultimately satisfy the requirement jj'1f;jj = 1, but other than that, 
the blocks '1f;1, ..• , '1f;L can be chosen independently. 

We can write the inner product explicitly as: 

L N 

t/JTvec(KhZ) = LLt/Jt(Kh)jZij (5.157) 
i=l j=l 

where (Kh)j is the jth column of Kh. The convex model allows each element 
Zij to vary within an interval: 

(5.158) 



www.manaraa.com

134 CHAPTER 5. DIAGNOSIS AND TESTING 

The maximum value of 1j;T vec(KhZ) is obtained by choosing Zij at its up
per or lower limit, depending on whether 1/J[(Kh)j is positive or negative, 
resp ectively: 

L N 

E E 1/Ji (Kh)jsgn [1/Ji (Kh)j 1 alVij I 
;=1 ;=1 

(5.159) 
L N 

a E E l1/Ji (Kh)j I . IVij I (5.160) 
;=1 j=l 

where sgn(x) equals the sign of x. 
To find the maximum norm of KhZ we must maximize (5.160) for 111/J11 = 

1. This requires some numerical effort, but the result is independent of the 
uncertainty parameter, a. Let S denote the maximum value of the double 
sum in (5.160), so that the maximum norm is: 

max IIKhZl1 = as 
ZEU(a) 

(5.161) 

Since the minimum norm is zero, this is precisely Yea). Hence, employing 
eq.(5.152), the reliability is: 

~ D..cr 
0-=-

2S 

5.5 Robust Reliability of Model-Order 
Determination 

(5.162) 

Determination of the order or dimension of a model is a particularly difficult 
and noise-sensitive system identification problem.5 Many procedures, such 
as Akaike's final prediction error method, are discussed in the literature [25, 
63, 87]. In this section we will outline an application of robust reliability 
analysis to the problem of choosing the order of a polynomial for fitting 
uncertain measured data points. 

5.5.1 Formulation 

In this subsection we formulate the basic reliability analysis for determining 
the model order, and in the next subsection we examine two examples. 

We have N measured but uncertain data points, (Xl, yd, ... , (XN, YN), 
which we will fit with a polynomial of order M: 

M 

f(x) = E amxm (5.163) 

51 am indebted to Prof. S. Braun of the Technion for directing my attention to this 
problem. 
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We will choose the polynomial coefficients ao, ... , aM to minimize the squared 
error of the fit: 

N 

SM = min I: [Yn - f(xn)f 
aD, ... )aM n=l 

(5.164) 

SM, the least-squared error, is a measure of the quality of the polynomial fit 
of order M, 

We wish to choose the order M of the fitting polynomial. If the number 
of coefficients, M + I, equals the number of data points, N, then the least
squared error 8M will vanish. But it is often impractical and unnecessary to 
choose such a high-order polynomial. We will develop a robust measure of 
the reliability of the fit, which allows one to compare different model-orders. 

Let Scr denote the greatest acceptable value of the least squared error. 
That is, to use the language of reliability analysis, we say that the polynomial 
fit of order M has failed if: 

(5.165) 

The uncertainty of the measured data points is represented by a convex 
model, U(o:). In other words, the data points (Xl, yd, ... ,(XN, YN) vary 
on the set U(o:). We obtain a value of the least-squared error SM for any 
given set of data points in U(a). Furthermore, we can evaluate the greatest 
magnitude of the least-squared error which could be obtained with any data 
in the convex model. Let us denote the maximum of the least-squared error 
by: 

(5.166) 

The robust reliability of model-order M is the greatest value of the uncer
tainty parameter a which is consistent with performance criterion (5.165). 
That is, equating S M (a) to Scr and solving for 0: yields the robust reliability 
of the Mth-order polynomial fit: 

(5.167) 

We will illustrate this analysis for two different choices of convex uncertainty 
models. 

However, before proceeding to examples, let us make a few general ob
servations. Examination of eq.(5.166). reveals that, for fixed moder-order 
M, S(o:) will increase monotonically with ct, as indicated schematically in 
fig. 5.14(a). This results from the property of nesting of convex models. One 
of the basic characteristics of all the convex models we have used is that as a 
convex model expands by increasing a, it contains all the smaller sets of the 
same family. That is, if 0: < a l then U(a) is a subset of U(o:/): 

0: < 0:' ==> U(o:) C U(o:/) (5.168) 

The second point to note is that one would usually expect S M ( ct) to 
decrease with M, for fixed uncertainty a, as shown in fig. 5.14(b). For a 
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Figure 5.14: Schematic dependence of SM(a) on a and on M. 

given set of data, the least-squared error SM from ~q.(5.164) decreases with 
M: 

(5.169) 

This inequality holds because the Mth order polynomial is a special case of 
the (M + 1)th order polynomial. However, this does not unequivocally imply 
that SM+l(a) will be less than SM(a), and when M + 1 is near N (the 
number of data points) so that 8M +I (a) is nearly zero, we might observe the 
reverse inequality. Nonetheless, the general trend of 8M versus M will tend 
to be as shown in fig. 5.14(b). 

From fig. 5.14(a) we see how the robust reliability of an Mth order poly
nomial fit is evaluated as the largest value of a consistent with no-failure 
according to condition (5.165). The straight line 8M = Scr intersects the 
curve SM(a) at a single point, whose abscissa is the robust reliability. 

Combining figs. 5.14(a) and (b) as in fig. 5.15(a) shows SM(a) versus a 
for a range of model-orders M. The value of M increases from the top to 
the bottom curve, in accordance with the discussion of fig. 5.14(b). Each of 
these curves intersects the critical value Scr at a single point, whose abscissa 
is the robust reliability, aM, for polynomial fit of that model-order. From this 
figure we see that aM increases monotonically with model-order, as shown 
schematically in fig. 5.15(b). 

5.5.2 Examples 

We first formulate a convenient expression for the least-squared error of the 
p6lynomial fit. 

SM can be expressed very succinctly with the help of a few definitions. 
The measured data are the N couplets (Xl, yd, ... , (XN, YN). Let y denote 
the vector of v-values: 

(5.170) 
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Figure 5.15: (a) Schematic dependence of SM(a) on a for various values of 
the model-order M. (b) Variation of liM with M. 

Also, let Xi <ienote the vector of powers of the value Xi: 

i = 1, ... ,N 

Finally, define the following two matrices: 

X = [i1, ... ,XN] E W(M+1)xN 

N 

C I: inx; = XXT E W(M+1)X(M+1) 

n=1 

(5.171) 

(5.172) 

(5.173) 

If M + 1 ~ N and Xi i= Xj for all i i= j, then X has full row rank because it 
is the first M + 1 rows of a non-singular Vandermonde matrix. Likewise C 
will be non-singular. 

It is now an elementary matter to show that the least-squared error of 
the Mth-order polynomial fit can be expressed as: 

il [I - XTC-1 Xl Y (5.174) 
.. f 

Y 

-T __ 
Y =.y (5.175) 

where the real symmetric matrix6 :::: is defined in eq.(5.174). 
The maximum value of the least-squared error of the polynomial fit of 

order M is the solution of the following general optimization problem: 

S~ ( ) -T~-M Q = maxy =.y 
U(o:) 

(5.176) 

6We note that:::: is a ''projector matrix". which projects into the colunm null space of 
X. Consequently, as for all projector matrices, the eigenvalues of :::: are O's and 1 'so 



www.manaraa.com

138 CHAPTER 5. DIAGNOSIS AND TESTING 

13 

<~ 11 

~ 9 
:E 
.!.'2' 
U 7 ex: 

5 ./ 

2 4 6 8 10 12 14 

Model order, M+l 

Figure 5.16: Reliability aM versus number of fitting coefficients M + 1. Num
ber of data points is N = 15. Scr = 1. f = 0.1, 0.15, 0.2. 

We will now consider two examples based on different choices of the convex 
model U(a). 

Example 4 Suppose that the x-coordinate data are certain and that the 
measured vector y belongs to an ellipsoid centered at the origin: 

U(a) = {Y: yTWy5, a2 } 

The maximum error SM(a) is the solution of: 

maxyT'3y subject to yTWy 5, a 2 

(5.177) 

(5.178) 

We have encC!untered this optimization problem previously in section 4.5.2 
and the solution is: 

(5.179) 

Equating this result to the critical value of the error as in relation (5.167) 
and solving for the uncertainty parameter leads to the following expression 
for the robust reliability of the Mth-order polynomial fit: 

max eig [W- 1/ 2 '3 W- 1/ 2 ] 
(5.180) 

Fig. 5.16 shows the variation of aM versus the order of the fitting function. 
The three curves correspond to different choices of the weighting matrix W, 
which determines the shape of the uncertainty-ellipsoid in the convex model 
of eq.(5.177). W is chosen to be proportional to a diagonal matrix as follows: 

W = c diag(wl, ... ,WN), 
n-l 

Wn = 1 - N _ 1 (1 - f) (5.181) 
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Figure 5.17: Reliability aM versus number of fitting coefficients M + 1. Num
ber of data points is N = 15. Scr = 1. f = 0.8, 0.9, 1.0. 

The value of f is different for each of the three convex models, and c is chosen 
so that the three ellipsoids have the same volume: 

( 
N ) -1/2 

C = II Wn 

n=l 

(5.182) 

The eccentricity of the ellipsoid increases as f decreases from unity, while 
f = 1 generates a spheroid. 

The robust reliability, aM, is the greatest value of the uncertainty param
eter Q: in the convex model of eq.(5 :177) which is consistent with no-failure, 
according to the criterion of eq.(5.165). In all cases the reliability of the fit 
increases as the number of polynomial coefficients approaches the number 
the data points, N = 15. (The case M + 1 = N is not shown, for in this case 
:::: vanishes, S M = 0 and aM = 00.) As the eccentricity grows, the reliability 
varies more strongly with model-order, so the curve for f = 0.1 varies most 
strongly with model order, while the curve f = 0.2 varies the least. 

Furthermore, for fixed model order, the reliability increases with eccentric
ity of the uncertainty-ellipsoid. The eccentricity expresses prior information 
about how the uncertain data vectors ii tend to cluster. A highly eccentric 
convex model implies a tendency for correlation between magnitude and di
rection of fi. At the other extreme, a completely spheroidal shape implies 
no knowledge about preferred directions of the' data vector. The results of 
fig. 5.16 show that a highly eccentric convex model exploits a high-order 
model better than a Imv-order model. At the other extreme, spheroidal mod
els show little or no improvement with model-order,7 as seen in fig. 5.17. In 
addition, the values of aM in fig. 5.17 are much less than in fig .. 5.16. 

'V\o'hen the convex model is a sphere, then IV is the identity matrix and the maximum 
eigenvalue in eq.(5.180) is unity regardless of the value of M, as commented in the footnote 
on p.137. 
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Consider again the case f = 0.1 in fig. 5.16. The highest-order model has 
a reliability index nearly twice as great as the lowest-order model. This means 
that the high-order model can tolerate more uncertainty without failing than 
the low-order model. However, this by itself does not indicate how large 
a value of the robust reliability is needed or desirable. We will return to 
consider the subjective interpretation of robust reliability in chapter 9. _ 

Example 5 Consider now an envelope-bound convex model. We suppose 
that the x-coordinate data are certain and that the measured Yi can deviate 
continuously on intervals of unknown size a. If 'fh is the ,1ominal or· the 
measured value, then the envelope-bound convex model is the set of intervals: 

U(a) = {y: IYi -Yil ~ a, i = 1, ... ,N} ( 5.183) 

We do not need to know the range of uncertainty, a, and our analysis ex
presses the robust reliability of the polynomial fit as the greatest value of 
the uncertainty parameter a which is consistent with no-failure according to 
performance criterion (5.165). 

In this example we have no convenient analytical solution for the greatest 
least-squared error, S M( a): 

S~ ( ) -T~-
M a = maxy =y subject to IYi - Yil ~ a, i = 1, ... , N ( 5.184) 

S M (a) increases monotonically with the uncertainty parameter, a, so the op
timization in (5.184) must be solved numerically for progressively increasing 
values of a until SM(a) reaches the critical value, Scr. The corresponding 
value of a is the robust reliability for Mth-order polynomial fit with interval 
uncertainty of unknown magnitude in the measurements. _ 

5.6 Ill-Posed Problems 

In the previous sections we have encountered fault-diagnosis and system
identification problems which require the solution for a vector x of linear 
equations of the form: 

Ax =y (5.185) 

where A and/or yare based on measurements. 
Let us consider in abstract terms the difficulties one may confront in 

solving eq.(5.185). If there were no noise in the measurements then an exact 
solution to eq.(5.185) will exist if eq.(5.185) accurately represents a physical 
system. However, because both A and yare noisy it is possible that a solution 
to eq.(5.185) will not exist. In fact, a solution to eq.(5.185) exists if and 
only if y belongs to the column space8 of A. We can use an equation-error 

8The column space of a matrix X is the linear vector space spanned by the columns of 
X. 
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minimization method to find a (hopefully) reasonable solution, even when 
eq.(5.185) itself has no solution, as we did in section 5.3.1. Our aim will be 
to understand why this solution may tend to be very sensitive to noise. This 
will motivate the discussion of section 5.7. 

5.6.1 Column-Space Analysis 

The value of x which we seek is that which minimizes: 

J = IIAx _ YI12 (5.186) 

where II ·11 is the euclidean norm for vectors. (Actually, other norms could 
also be used.) 

Let us consider the nature of the solution of minx J. The extrema of J 
are found as: 

o 

which implies: 

(5.187) 

(5.188) 

(5.189) 

Now, let cs(A) denote the column space of A. The vector Y can be expressed 
as the sum of two vectors: YII belonging to cs(A) and Yi. belonging to the 
complementary subspace: 

Y = YII + Yi. (5.190) 

Yi. is orthogonal to the columns of A: 

ATy.l =0 (5.191) 

So now, using eqs.(5.190) and (5.191), we can write eq.(5.189) as: 

AT Ax = ATYII (5.192) 

or, equivalently: 
(5.193) 

By definition, YII belongs to the column space of A, which means that YII can 
be expressed as a linear combination of the columns of A. Hence a solution 
exists for: 

Ax= YII (5.194 ) 

This vector x solves eq.(5.193) and will be the least-squares or minimum 
equation-error solution. 

Now consider what happens when A and yare corrupted by noise, b. and 
TJ respectively. Eq.(5.185) then becomes: 

(A+b.)x=Y+TJ ( 5.195) 
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The least-squares solution of eq.( 5.195) is obtained by solving the analog of 
eq.(5.194), which is: 

(5.196) 

where YIIA+A and 1]IIA+A are the projections (components) of Y and 1], respec
tively, in the column space of the corrupted matrix, A +~. 

It is clear that 1], the error in Y, will introduce error in the solution of 
eq.(5.196). 

~, the error of A, may also have a subtle but substantial effect. We can 
see this as follows. ~ originates from errors. Thus, even though ~ may be 
of small magnitude, the structure of its columns is very different from the 
structure of the columns of A. For example, even though ~ and A may 
have zeros at the same elements, we would not usually expect columns of 
~ to be proportional to columns of A. This means that the column space 
of A + ~ may be quite different from the coluIf1n-space of A alone, even 
though the norms of A and A + ~ may differ only marginally. But YIIA+A and 
1]IIA+A are the projections of Y and 1] into the column space of A +~. Since 
cs(A + ~) is possibly quite different from cs(A), we expect that YIIA+A and 
1]IIA+'" may differ substantially from YIIA and 1]IIA' the projections of Y and 1] 
into the column space of the uncorrupted matrix, A. Thus the error matrix, 
~, may have small norm and yet still have a substantial effect in distorting 
the least-squares solution. 

Continuing this qualitative discussion, let us note that the difference be
tween cs(A+~) and cs(A) involves the dimension of the space, ~N, of which 
these are subspaces. We should expect some proportionality between the 
disparity of these column spaces and the dimension, N. If N is large and 
rank(A) ~ N, then cs(A+~) has a lot of "room" into which to diverge from 
cs(A). In this case, the distortion of the solution may be substantial. On the 
other hand, if ~N is itself a space of low dimension then cs(A) "fills" most of 
this space by itself, so cs(A +~) cannot differ from cs(A) by too much. The 
consequence is that we should expect ill-conditioning to be more problematic 
in systems of high dimensionality than in low-dimensional systems. 

Example 6 Let us consider a simple example of the effect of rank, dimension 
and uncertainty on the least-squares solution. Let ek denote the kth standard 
basis vector in ~N: unity in the kth position, zero elsewhere. Let the matrix 
A be e1 : 

A = e1 E ~NXl ( 5.197) 

and let Y be a vector of ones: yT = (1, ... , 1). The projection of Y into the 
column space of A is: 

1 1 
YII = Yle = e ( 5.198) 

Hence eq.(5.194) becomes: 
( 5.199) 
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whose solution is: 
x=1 

Now add an uncertain term to the matrix A: 

1 
j3= N-l 

143 

( 5.200) 

(5.201) 

The norm of dis II-JN - 1, which is small if N is large. The projection of 
y into the column space of A + d becomes: 

2(N - 1) 1 
YIIA+L>. = N (e + d) ( 5.202) 

Now eq.(5.194) becomes: 

( 5.203) 

whose solution is: 
2(N - 1) 

XA+~ = N (5.204) 

The fractional change in the least-squares solution, as a result of the small 
error in A is: 

Ix - XA+~ I = I!"! - 21 
x N (5.205) 

which approaches unity as the dimension, N, increases, while the norm of 
the error matrix d becomes ever smaller. _ 

5.6.2 Multiplicity of Solutions 

Let us consider the multiplicity of solutions of eq.(5.185). Discussion of this 
question, directed specifically at linear elastic systems, is found in [66]. See 
also [56, section 3.10]. 

A necessary and sufficient condition for existence of solutions of eq.( 5.185) 
is that A and the matrix [A, y], formed by adjoining y as an additional column 
in A, have the same rank: 

rank[A] = rank[A, y] ( 5.206) 

In other words, solutions exist for eq.(5.185) if and only if y is in the column 
space of A. 

Let us now consider systems satisfying eq.(5.206). How many solutions 
does the system have, and what is the structure of these solutions? 

Let or be the dimension of the column null space of A. In other words, there 
are exactly r linearly independent solutions of the homogeneous equation: 

Ax = 0 ( 5.207) 
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Let us denote these solutions Xl, ... ,xr. Let ns(A) denote the column null 
space of A. 

Now, let XO be a particular solution of eq.(5.185): 

(5.208) 

Every solution x of eq.(5.185) can be expressed as: 

x = xO + x' (5.209) 

where x' E ns(A), because Ax' = O. Furthermore, there ~re precisefy r 
linearly independent solutions like eq.(5.209): 

(5.210) 

In conclusion, if A is very rank deficient, then its null space has high 
dimension, r. Consequently, if any solutions of Ax ;:::: y exist, then there are 
many linearly independent solutions. Note in particular that the multiplicity 
of solutions is explicitly a result of the dimensionality of the solution space. 
Hence the problem is again more severe in systems of high dimension than 
of low dimension. 

5.7 Selective Sensitivity 

High-dimensional ill-conditioning exists in many practical fault diagnosis 
problems. In this section we will study the reliability of a diagnostic system
identification method which partitions a large-dimensional problem into many 
low-dimensional ones, thus ameliorating the ill-conditioning to some extent. 
However, there is "no free lunch" in fault diagnosis, and this advantage is 
gained at the expense of extensive sensor requirements. 

5.7.1 Basic Concept of Selective Sensitivity 

The concepts and methods of selective sensitivity are discussed elsewhere [10, 
13, 23, 29, 42, 76]. The aim here is only to make a brief operational review 
of the basic idea. 

Consider an N-dimensional linear elastic system: 

Mi(t) + Cx(t) + Kx(t) = HJ(t) (5.211) 

where M, C and K are inertia, damping and stiffness matrices, respectively. 
The deflection vector is x(t), the input vector is J(t) and the measurement 
vector is yet): 

yet) = Gx(t) (5.212) 

G and H are real matrices, possibly rectangular, which indicate the locations 
of the sensors and actuators, respectively. 
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Let ¢( s) and 1jJ( s) represent the Laplace transforms of the input and 
the output vectors. Then eqs.(5.211) and (5.212) can be transformed and 
combined as: 

1/'(S) = GF(s)H¢(s) (5.213) 

where F(s) is the transfer matrix (or frequency response matrix). Its inverse, 
Q( s) (the dynamic stiffness matrix) is: 

(5.214) 

The matrices M I C and K depend on physical model parameters such as 
stiffnesses, masses, geometrical parameters, etc., which we denote PI, P2, .... 
The output sensitivity to the nth model parameter, Pn, is defined here as the 
norm of the differential output variation to the nth parameter: 

(5.215) 

where IIII is the euclidean norm for vectors. 
When S(Pn) is large, the Laplace-transformed output is sensitive to varia

tions of the model parameter Pn, while if S(Pn) is small then little information 
about Pn is contained in the measurements. A Laplace-transformed output 
which is sensitive to a given model parameter can be used to estimate that 
parameter, while an output which is insensitive to a model parameter will 
not be useful for estimating that parameter. A selectively sensitive input 
for Pn is an input which causes large sensitivity to Pn and small (hopefully 
vanishing) sensitivity to all other model parameters. The main goal of selec
tive sensitivity is to seek a selectively sensitive input for each parameter (or 
for small groups of parameters) and thereby to decompose the overall sys
tem identification into a sequence of low-order estimation problems. Since 
ill-conditioning tends to be more severe for high- than for low-dimensional es
timations, this decomposition may be expected to reduce the ill-conditioning 
and to enhance the robustness of the diagnosis. 

We now state a sufficient condition for the existence of a selectively sen
sitive input. (This condition is both necessary and sufficient if G is square 
and invertible). This condition also indicates how such an excitation may 
be constructed. Various analytical, numerical and practical aspects of this 
condition are discussed in the references mentioned earlier. 

One is often justified in assuming that the dynamic stiffness matrix, Q( s), 
is a linear function of the model parameters, PI, P2, .... In other words, Q( s) 
can be expressed as: 

iVp 

Q(s) = L PnAn(s) ( 5.216) 
n=l 

The N x N matrices An depend on the topology of the structure - what 
is connected to what - and on the formulation of the finite element rep
resentation of the structure, but not on the parameter values themselves. 
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Once the finite element representation of the system has been chosen (not 
always a trivial matter in itself), the matrices An are completely known. For 
example, the mass, damping and stiffness matrices are often linear in local 
physical parameters ([68], [69]): 

(5.217) 
n n n 

where the matrices Mn , en and Kn do not depend on the physical model 
parameters m n , en and kn which represent local mass, damping and stiffness. 

Employing eq.(5.213) one finds the sensitivity to Pn to be the follo'wing 
hermitian quadratic form in the Laplace transform of the input: 

¢;t HT[FAnF]tCTC[FAnF]H¢; (5.218) 
... J 

Y 

Dn 

(5.219) 

where (5.218) defines the sensitivity matrix, Dn. (Superscript T implies the 
matrix transpose; superscript t means matrix conjugate transposition.) 

Let I be a set of indices of model parameters. As a matter of definition, 
the condition for selective sensitivity to the parameters indexed in I is: 

S(Pn) = { not °zero 
if 
if 

nfl-I 
nEI ( 5.220) 

Combining this with relation (5.219), one can show that an input causes 
selective sensitivity to the model parameters whose indices are contained 
in the index-set I if vectors () and ¢; exist which satisfy the following two 
relations. In fact, ¢; will be the desired selectively sensitive input. 

AO-{ ° n - not zero 
if 
if 

nfl-I 
nEI 

H ¢; = Q() or F H ¢; = () 

(5.221) 

(5.222) 

It is important to note that solutions, (), of eq.(5.221) are independent of 
the model parameters, and depend only on the topology of the system. In 
addition, solution vectors 0 and ¢ for eqs.(5.221) and (5.222) exist for most 
parameter sets I if the topology matrices An are sparse. This is usually the 
case in elastic mechanical systems." 

Exploiting the orthogonality properties of 0 in eq.(5.221) and the linear 
sub-system modelling, eq.(5.216), the lefthand relation in eq.(5.222) becomes: 

(5.223) 

We now consider the physical interpretation of a selective input. An input 
exists which is selectively sensitive for parameter Pn if the output, (), satisfies: 

(5.224) 



www.manaraa.com

5.7 SELECTIVE SENSITIVITY 147 

Figure 5.18: Undamped two-dimensional system. 

where I is a non-zero constant vector. If Ai is symmetric and positive (or 
negative) semi-definite, then eq.{5.224) is equivalent to: 

(5.225) 

Now for the physical meaning. Suppose Ai = K i , so kj/(i is a local 
stiffness matrix. Then ()T Ai() is proportional to a local strain energy. Thus 
an input is selective for (against) the stiffness parameter kn if and only if the 
resulting local strain energy is not zero (is zero). 

5.7.2 Example: 2-Dimensional System 

Consider the undamped 2-dimensional system shown in fig. 5.18: two masses 
connected in series by linear compressional springs; the system is fixed at one 
end, free at the other. The mass matrix is M = diag(ml, m2). The stiffness 
matrix is: 

(5.226) 

Let us suppose that the masses ml and m2 are known, and we wish to 
find a selectively sensitive excitation for determining kl . That is, we seek 
an input such that the Laplace-transformed output is sensitive to kl and 
insensitive to k 2 • We will find that this can be done with harmonic inputs, 
but actuators acting directly on both masses are necessary. 

We seek an input for selectively sensitive estimation of kl . Let us identify 
the four model parameters as: 

(5.227) 

We assume that Pl and P2 are known. The dynamic stiffness matrix, Q(8), 
is linear in these model parameters, as in eq.(5.216), where the matrices An 
are: 

Al = (80
2 ~), A2 = (~ 802 ) ( 5.228) 

A3 = (~ ~), A4 = ( ~ 1 ~ 1 ) (5.229) 

The first condition for selective sensitivity for k l , eq.(5.221), is existence of 
a vector 8 satisfying: 

(5.230) 
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Clearly, no dynamic measurement can distinguish kl from ml (a static mea
surement could, though, since then s = 0). However, we are assuming the 
masses to be known, so we can relinquish the requirement that AlB = A2B = 
O. One can distinguish between the stiffness parameters by choosing B as: 

8(s) = ( i ) ((8) (5.231) 

where ((s) is an arbitrary scalar function. With this B one finds A3B =f:. 0 and 
A4B = O. 

Now, to actually find the input, r/J, yielding selective sensitIvity to kl and 
insensitivity to k2' we must use this value of B and solve eq.(5.222). In the 
present example, with two actuators, H is the identity matrix and eq.(5.222) 
becomes: 

r/J = ( s2ml + kl ) ((s) 
s m2 

(5.232) 

We see then, that an input exists which causes the output to be sensitive 
to kl and insensitive to k2, so the estimation of kl can be separated from the 
estimation of k2 . As always in selective sensitivity, the determination of this 
input depends on the model parameter being estimated (kl) but not on the 
parameters to which the output is insensitive (k2)' We note that selective 
sensitivity for kl requires direct excitation of both masses: two actuators are 
needed. 

5.7.3 Example: Structural Integrity of a Building 

We will now consider an example with a larger model. 
Substantial effort has been devoted to the design of seismic-resistent build

ings and to the diagnosis of structural damage resulting from earthquake ex
citation [34, 84, 102, 107]. A major obstacle in assessing earthquake damage 
is the complexity of the structures involved and the resulting multiplicity of 
model parameters whose values must be up-dated. 

There is a strong temptation to attempt this damage assessment on the 
basis of measurements of the building during the earthquake itself. This, 
however, is a difficult identification problem in all but the most severe cases. 
where direct inspection might reveal most of the damage anyway. The seis
mic input, applied only at ground level, is a poorly designed excitation for 
identifying localized damage in the structure. Fault detection in such cir
cumstances is prone to be ill-conditioned. 

The problem can be reduced by using the method of selective sensitivity. 
However, many actuators and sensors will be needed. We will illustrate this 
now. 

The building will be modelled as a shear column. One can first estimate 
the stiffnesses by selectively sensitive static loads and deflections, and then 
use selectively sensitive dynamic excitations for determinating the masses 
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Figure 5.19: Variables and parameters of the shear-type building. 

and damping coefficients. The deflection-equations are based on the work of 
Zhang and Soong [107]. 

The Model 

The dynamic variables and model parameters of the shear-type building 
model are shown in fig. 5.19. N floor units are depicted. The lateral shear 
displacement of the nth floor unit is Xn(t), while the resulting shear force in 
the columns of the nth floor unit is Yn-1(t). External lateral loading on the 
nth floor is represented by fn(t). The mass of the nth floor is mn and the 
stiffness and damping coefficients of the columns are kn and Cn , respectively. 
The basic dynamic equations, based on [107], are: 

In +Yn 
Yn-1 

Yn-1 + mnx 

kn[xn - Xn-1] + cn[xn - Xn-1] 
(5.233) 

(5.234) 

There is no ground motion during th~ integrity tests, so Xo Xo = O. 
In addition, the shear at the top of the building must vanish: YN = O. 
The shear forces can be eliminated and these equations can be combined 
in matrix form as in eq.(5.211) with H as the identity matrix and with 
M = diag( m1, ... , mN)' The stiffness matrix K = [km,n] is tridiagonal, with 
the foHDwing structure: 

(5.235) 
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The damping matrix C has precisely the same form, with each k replaced by 
c. We adopt the convention that kN+1 = CN+l = O. 

Let 1f>(s) and ¢(s) be the Laplace transforms of x(t) and f(t), respectively. 
Then the Laplace transform of the equations of motion becomes: 

Q(s)1f>(S) = ,p(s) or 1f>(s) = F(s)¢(s) (5.236) 

which is precisely eq.(5.213) with G = H = [. 
The mass, damping and stiffness matrices can be represented in linear 

sub-model parametrizations as in eq.(5.217). Concise representation of these 
matrices is helpful in finding the excitations which are needed for inducing 
selectively sensitive response. Let e"f represent the N-dimensional standard 
basis vector: unity in the I'th position and zero elsewhere. Then one finds 
the following relations: 

(en _ en-l) (en _ en - l{ 

sKn 

where the dynamic stiffness matrix is: 

Q(s) = L: [mnMn + cnCn + knKnl 
n 

Conditions for Selective Sensitivity 

(5.237) 

(5.238) 

(5.239) 

(5.240) 

We are now prepared to determine the conditions for selective sensitivity for 
the stiffness, mass and damping model parameters. We will determine which 
parameters can be selectively probed and what the inputs must be. We will 
find that a high degree of selectivity is possible, implying good conditioning 
of the estimation and low sensitivity to noise. However, many sensors and 
actuators will be required. 

We begin by considering static loading to determine the shear stiffnesses. 
When using using static measurements the sensitivities to mass and damping 
are automatically zero. This comes about algebraically simply because s = O. 
Condition (5.221) for selective sensitivity for the I'th stiffness is existence of 
an output vector B such that: 

Kn B = { 0, 
not zero, 

nf./' 
n=/, 

(5.241) 

One finds that 
( 5.242) 

results in sensitivity to parameters indexed n = i and n = i - 1, where h is a 
constant and ei is a standard unit vector. Starting at the first storey (n = 1) 
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and proceeding upwards, one can estimate the stiffness coefficients one at a 
time. 

The load required to achieve the output vector (5.242) is: 

~ K() (5.243) 
N 

h Lk"K"ei (5.244) 
,,=1 

-h (ei+ 1 _ 2ei + ei - 1) (5.245) 

A triplet of load points is needed for each stiffness diagnosis, if the stiffness 
coefficients are to be tested separately. While many actuators and sensors 
are needed, the stiffness estimation of this N-storey building is partitioned 
into N decoupled one-dimensional estimations. In light of our discussion 
in section 5.6, this will tend to reduce the ill-conditioning and enhance the 
reliability of the diagnosis, 

We now inquire if we can obtain selective sensitivity to the /'th mass. 
Using the fact that FQ = I, one finds that: 

8Fj8mn = -F8Q/8m"F 

Hence the variation of the output 'Ij; with the nth mass is: 

-F 8Q F~ 
8mn 

-FMnFrjJ 

( 5.246) 

(5.247) 

(5.248) 

Similarly, the output variations with respect to the stiffness and damping 
coefficients are: 

For selective sensitivity to m'Y we require: 

and 

{ On =I /' 
SCm,,) = not zero n = /' 

S(kn ) = S(cn ) = 0, n = 1, ... , N 

Employing eq.(5.247) and (5.249), this is equivalent to: 

M FrjJ _ { 0 n =I /' 
n ,- not zero n = /' 

and 
KnF</i=CnFrf;=O, n=I, ... ,N 

(5.249) 

( 5.250) 

(5.251) 

( 5.252) 

(5.253) 
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But tf; = F<jJ, so a necessary condition for selective sensitivity to the ,th mass 
is that the output satisfy the following relations: 

M,tf; I- 0 (5.254) 

Mn'lj; 0, nl-, (5.255) 

Cn'lj; 0, n=1,oo.,N (5.256) 

Kn'lj; 0, n= 1, ... ,N ( 5.257) 

Using eq.(5.237), one finds that eqs.(5.254) and (5.255) imply that tf;(s) must 
be proportional to the ,th standard basis vector: 

'Ij;(s) = h(s)e' (5.258) 

where h(s) is the Laplace transform of an arbitrary (non-zero) scalar function. 
This choice of 1j; then violates eqs.(5.256) and (5.257) for n = , and n = ,+ 1. 
In other words, sensitivity to a single mass parameter, m" is invariably 
accompanied by sens~tivity to the damping and stiffness parameters c,' C,+l, 
k, and k,+l. The response will, however, be insensitive to all of the remaining 
model parameters. 

The Laplace transform of the load required to produce the desired selec
tivity is found as follows from eqs.(5.236) and (5.258): 

<jJ(s) Q(s)'Ij;(s) 

h(s)Q(s)e1' 

h(s) [m,M1' + c,C1' + C1'+lC,+l 

(5.259) 

(5.260) 

+kiK1' + ki+1Ki+d e1' (5.261) 

h(s) [(s2~ + SCi + SCi +1 + k1'+ k1'+de1' 

- (SCi + k1')ei - 1 - (sc1'+1 + ki+de1'+l] (5.262) 

One sees that selective sensitivity for m1' and c1' is obtained by dynamically 
loading the building at three points only: at the (, - 1 )th, ,th and (, + 1 )th 
floors. (When estimating m1 and C1 only two external loads are required). 
This triplet of actuators must move along the structure as successive floors 
are tested. Again we expect enhanced reliability and reduced ill-conditioning 
of the parameter estimation, at the cost of many sensors and actuators. 

5.8 Problems 

1. Response set for the bending moment. Consider the simply supported 
uniform beam in fig. 5.1, which carries an uncertain load <jJ(x) dis
tributed over an unknown length y ::; L/2. The uncertainty of the load 
profile is represented by a Fourier ellipsoid-bound model: 

N 

<jJ(x) = 2: (In cos mrx/y = (JT ,(x) (5.263) 
><=1 
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where j3 is the Fourier-coefficient vector and I( x) is a vector of trigono
metric functions. The uncertainty in (3 is represented: 

(5.264) 

Construct the response set for the bending moment measured at the 
midpoint of the beam. 

2. Identification of the nominal load. Consider the simply supported uni
form beam in fig. 5.1, which carries an uncertain load ¢J(x) distributed 
over a known length y .::; L/2. The uncertainty in the load profile is 
represented by eq.(5.2). Use the moment measured at the midpoint to 
diagnosis the nominal load, ¢. (a) Determine the fractional resolution 
of ¢. (b) The diagnosis is satisfactory if the fractional resolution is no 
greater than the critical value, fer. Determine the robust reliability of 
the diagnosis. 

3. Multi-hypothesis diagnosis of a torque load. Consider a rotating system 
subject to uncertain transient torque loads. The dynamics are modelled 
as: 

JO(t) + kO(t) = u(t), 0(0) = 0(0) = 0 (5.265) 

The uncertain torque belongs to one of two convex models, one corre
sponding to small transients and the other to large transients: 

Ui(O:) = {U(t): 100 (u(t) - u;Ct))2 dt .::; 0:2}, i = 1,2 (5.266) 

where 0 < U1(t) < U2(t), so U 1 and U 2 are sets of uncertain small and 
large transients, respectively. Let 8i(t) represent the angular displace
ment in response to Uj(t). The angular displacement 0 is measured at 
one instant, and the following nearest-neighbor rule is used to decide 
between the two convex models. Decide that the load came from U i if: 

( -)2 ( - 2 0- OJ < e - OJ) (5.267) 

This decision algorithm is considered to succeed if it invariably identifies 
the correct input set. What is the robust reliability of the algorithm? 
That is, how much uncertainty can the algorithm tolerate without fail
ure? 

4. t Modification of problem 3. Measure the angular displacement at N 
instants: t1 < ... < tN. Let 8j (t) represent the vector of angular dis
placements in response to Uj at these times, and let Ou denote the vector 
of displacements for arbitrary load u(t). We use a nearest-neighbor de
cision rule like relation (5.267), except now we consider the euclidean 
norm of the difference. Choose U; if: 

(5.268) 
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What is the robust reliability of this diagnosis with N measurements? 

5. Multi-hypothesis input diagnosis. Consider a two-dimensional system: 

x = ax(t) + bet) + f3(t) , x(O) = 0 (5.269) 

where a is a scalar, x(t) is a 2-dimensional state vector, bet) is a known 
input, and f3(t) is an unknown anomalous input. The response is de
noted x.8(t). 

Let the anomalous input belong to one of two sets of functions: 

.r1(a) = {f3(t): [th(t) - iJ]2 ~ a2, 

.r2(a) = {f3(t): [f32(t) -:BF ~ a2, 

f3~(t) ~ a 2 } 

f3r(t) ~ a 2} 

(5.270) 

(5.271) 

We consider two hypothesized modifications, one from each of these 
sets: 

(5.272) 

Can we distinguish the two classes of modifications, .r1 and .r2, by 
comparing the measured response, x(t), at a particular instant, against 
the anticipated response from either h1 or h2? The decision algorithm 
is that we choose :F n if: 

Ilx - Xh" II = min IIx - Xhm II m=1,2 
(5.273) 

What is the robust reliability of this algorithm? That is, what. is the 
greatest value of the uncertainty parameter, a, such that the decision 
is always correct, for any modification in either .r 1 or .r 2? 

6. Diagnosis of stiffness. The body and trailer of a two-stage autobus 
are connected by heavy springs which allow limited vertical in-plane 
rotation between the two sections. A vibration sensor monitors the 
angular deflection 8(t), and an on-board microprocessor evaluates the 
mean-squared deflection: 

liT ()2 = - (J2(t) dt 
T ° 

(5.274) 

The measurement is used to detect anomalous decrease in the rotational 
stiffness. Assume the rotational vibration is described by a single degree 
of freedom, as in eq.(5.265). Prior information about the uncertain 
input u(t) establishes a Fourier-ellipsoid bound convex model: 

U(a) = {u(t) = f3T -y(t): f3TWf3 ~ a 2 } (5.275) 

where -yet) is a known vector of trigonometric functions. The nomi
nal stiffness is ko, and the measured value of (J2 is used to distinguish 
ko from k1 . (a) What is the robust reliability of the diagnosis? (b) 
For a given amount of uncertainty, a, what is the smallest fractional 
increment of stiffness which can be unambiguously diagnosed? 
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Chapter 6 

Reliability of Mathematical 
Models 

6.1 Models, Decisions and Reliability 

Models of mechanical systems are developed for various purposes, including 
design, safety assessment, dynamic analysis and so on. No model is perfect, 
and model inaccuracy reduces the reliability of decisions based on the model. 
Furthermore, there is no unique definition of the accuracy of a model. Rather, 
model inaccuracy should be evaluated with respect to the intended use of the 
model. In this chapter we will evaluate the reliability of models in terms of 
the robustness-to-uncertainty of decisions based on the model. 

The concept of robust model reliability developed here is that a model is 
reliable if subsequent applications of the model can tolerate a large amount of 
uncertainty. Conversely, model-based decisions which are fragile with respect 
to uncertainty, which can tolerate only a small amount of uncertainty before 
unacceptable or unstable decisions become possible, are unreliable. 

Before we discuss some examples, let us outline our analysis of model relia
bility. Our models will have two components. The mechanical model is based 
on engineering information and physical principles, and describes some prop
erties of the system. For example the differential equation describing flexural 
vibration of a beam is a mechanical model. Or, the spatial variation of a 
material property such as stiffness may sometimes be the relevant mechan
ical model. The uncertainty model quantifies the possible inaccuracy of the 
mechanical model as well as the uncertainty of the environment within which 
the system operates, such as load uncertainty. We will use convex models 
to represent uncertainty. The final link in our analysis is the decision or 
application which is based on the mechanical model. The mechanical model 
is reliable and the decision is robust if the decision does not change signifi
cantly as the model varies over the set of possible values consistent with the 
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System Reliability 
Mechanical System 
Uncertainty Models 

Failure Criterion 

Model Reliability 
Model and Decision 
Uncertainty Models 
Decision Stability 

Table-6.1: A.nalogy between robust reliability of systems and of mathematical 
models. 

uncertainty. 
This concept of the robust reliability of mathematical models is a direct 

analog of robust system reliability. This is certainly not the only way one 
could define the reliability of a mathematical model. . It can be useful to 
talk of a model as being reliable if we know that· it very accurately predicts 
particular behavior. In this case we would be defining reliability in terms of 
small uncertainties associated with that model. Decisions based on such a 
model might not be robust to uncertainties, but this would not be important, 
since the uncertainties are known to be small. Such a model does not have 
the property of robust reliability which we will develop in this chapter. 

The analogy between robust reliability of mechanical systems, which we 
have studied in chapters 3 and 4, and the robust reliability of mathematical 
models, is summarized in table 6.1. We replace the physical system by the 
mathematical model together with the subsequent decisions based on that 
model, and we consider the stability or acceptability of those decisions rather 
than the mechanical failure of the system. 

We begin with two examples, to illustrate some of the possible imple
mentations of this sort of reliability analysis. In section 6.2 we will consider 
the reliability for safety-assessment of an uncertain geometrical model of a 
cooling fin subject to fluid loading. In section 6.3 we study the reliability 
in predicting the dynamic behavior of a large-dimensional elastic structure 
which is approximately represented with a limited number of modal degrees 
of freedom. In section 6.4 we consider the more general problem of robust 
identification based on multi-hypothesis testing. 

6.2 Cooling Fin With Uncertain Geometry 

Let us consider a cooling fin of length L and tilted at an angle () with respect 
to the flow direction of a fluid which exerts a force of ¢ [Newton/vertical 
meter} on the fin.1 The fin has rectangular cross section with uniform width 
Wand variable but uncertain thickness 2T( v), 0 ::; v ::; L. The material 

1 We analyzed the reliability of this system with respect to uncertain fluid loading in 
section 3.3, pp.39-47. 
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properties are such that the fin will fail if the normal tensile stress at any 
point on the fin cross section exceeds the critical value Ser. 

The model we wish to develop is the thickness profile, T( v), and the 
question We ask is: how accurately do we need to measure this profile? The 
uncertainty in the model - the uncertainty in T(v) - will be expressed by 
a convex model U(a). The decision to be made on the basis of the model is: 
will the fin break under a given load ¢? The question of robustness is: for a 
given model, T( v), how much uncertainty or inaccuracy can be tolerated in 
the model without altering the decision? The model is reliable if the decision 
is unaltered even if the model is quite erroneous. 

The normal stress in the cross section at position v along the fin is greatest 
at the outer surface, a distance T(v) from the normal plane, and equals: 

( ) _ M(v)T(v) 
S v - lev) (6.1) 

where M(v) ;:::: O.5¢(L-v)2 sin2 (J is the bending moment in the fin at position 
v and lev) ;:::: 2WT3 (v)/3 is the area moment of inertia of the cross section. 
Using these expressions for M and I, the maximum tensile stress in the cross 
section at position v is: 

S(v) = 3¢(L - v)2 sin2 () 

4WT2(v) 
(6.2) 

Let T( v) denote the unknown model error at position v along the fin, and 
represent the model uncertainty by the convex model: 

(6.3) 

where To(v) is the model which is adopted. In otherwords, the fractional 
error of the model at any position along the fin can be as large as a. The 
parameter a is a measure of the degree of uncertainty of the model. The 
model is reliable if the decision regarding the safety of the fin will not change 
even if a is large. So our analysis concentrates on the question: how large 
can a be without altering the safety-decision? 

The fin will not break if the tensile strength is not exceeded anywhere 
along its length, so the decision is based on comparing the maximum tensile 
strength based on the model, To(v), against the critical value ofthe strength: 

3¢(L - v)2 sin2 () 

Ser 2: 4WTJ( v) (6.4) 

The fin is "safe" if this inequality is satisfied for all 0 ::; v ::; L, but "unsafe" 
if the opposite inequality holds anywhere along the fin. 
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The uncertainty in the model at position v is r( v). The greatest uncer
tainty which does not alter the decision is evaluated by treating (6.4) as an 
equality and replacing To by To + r: 

3¢(L - v)2 sin2 B 
Scr = 

4W[To(v) + r(v)J2 
(6.5) 

The thickness To + r is non-negative, so the uncertainty satisfies -To :s; r, as 
well as belonging to the convex model U(o:). Thus the critical uncertainty, 
which just causes the decision to switch, is obtained by rearranging (6.5) to 
yield: 

r(v) --1+(1-~) LSinBj 3¢ O:S;v:S;L (6.6) 
To(v) - L 2To(v) scrW' 

But the uncertainty model, U(o:) , requires that: 

-- <0: I r(v) I 
To(v) -

(6.7) 

Thus the greatest model uncertainty which leaves the safety-decision un
changed is: 

a = o~gL 1-1 + (1- i) ~;:~v~ j s~tv I (6.8) 

a is the greatest value of the uncertainty parameter which leaves the decision 
insensitive to the model uncertainty. This is the "robustness" of the decision 
or the "robust reliability" of the model. When a is large the decision is robust 
with respect to uncertainty and the model is reliable; when a is small the 
decision is fragile and the model is not reliable. a is a dimensionless ratio 
of thicknesses, and represents the relative error with which we must measure 
the thickness profile in order to assure a stable decision. 

Let us examine the special case of constant nominal thickness, To. Define: 

(3 = LsinB j 3¢ 
2To scrW 

(6.9) 

From eq.(6.6), the absolute value of the fractional error of the model can be 
expressed: 

(6.10) 

which is shown in fig. 6.1. From these figures and eq.(6.8) we see that the 
robustness of the decision, ii, is zero if (3 ;:::: 1, and decreases linearly with (3 
if (3 :s; 1: 

~ {1-(3 0:= 0 (6.11) 

In other words, when (3 exceeds unity, the reliablity of the model vanishes: 
arbitrarily small error in the nominal model can cause the decision about the 
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Figure 6.1: I~ I versus {3, for {3 ~ 1 (a) and {3 ~ 1 (b). 
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safety of the fin to switch from "yes" to "no" or the reverse. In other words, 
when j3 ~ 1 the decision is not robust in the sense of being quite fragile with 
respect to modelling error. On the other hand, when {3 < 1 the decision 
can tolerate some model uncertainty and still remain stable. The smaller the 
value of {3, the more reliable is the model. 

j3 is a function of physical parameters, so the dependence of the robust
ness on j3 can lead to physical insight and also has design implications. For 
example, since j3 increases with the square root of the force density </J, the 
robust reliability a of the model decreases with V¢ up to a critical value (at 
which j3 = 1) and thereafter a = 0, indicating no robustness of the decision 
to model uncertainty. Conversely, j3 decreases inversely with the square root 
of the fin width, indicating that wider fins will be more reliable in terms of 
the stability of the safety decision. 

6.3 Modal Truncation of a High-Dimensional 
Model 

In many industrial design and analysis Cl;pplications one develops a numerical 
finite-element model for describing small-amplitude vibrations of a structure. 
A complex object, like a car body or a bridge, has a vast number of modes 
of vibration. The accurate description of the possible vibrations of such 
a system requires a model of very high dimension, so these finite-element 
models can have many thousands of degrees of freedom. 

In the design stage, a preliminary model is constructed based on physical 
principles and prior experience. However, when the structure is built it is 
usually necessary to improve the preliminary model by performing measure
ments, so that the model can be used for accurate prediction and final design 
and safety analyses. 
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A common approach in measuring large elastic structures is to measure 
the frequency and shape of natural modes of vibration. However, it is rarely 
practical to measure all the modes of a large structure, nor is it necessary. 
Reliabli~ decisions can be based on models obtained from measuring a limited 
number of natural modes. The questions are: how many and which modes 
should be measured? In this section we will study this question from the 
point of view of robust reliability. 

Consider a large N-dimensional linear elastic structure subject to uncer
tain loads. We will model this system with only r of its N natural modes. We 
will then evaluate the reliability of the truncated model, in comparision with 
the full-rank model, in predicting displacements resulting from the uncertain 
inputs. We require that the prediction error not exceed a specified threshold. 
The maximum prediction error increases with both the input uncertainty and· 
with the extent of modal truncation. This allows us to determine the great
est possible economy in the modal measurements, consistent with a given 
amount of input uncertainty and a specified acceptable prediction error. Or 
conversely, the robust reliability of a truncated model is the greatest value 
of the uncertainty consistent with specified acceptable prediction error. We 
will also be able to determine which modes should be retained in the reduced 
model. 

In this example the mechanical model whose reliability is evaluated is 
the particular selection of the r modes we retain, from among the full set 
of N modes of the complete finite-element model. The uncertainty model 
is the input uncertainty model, which will be specified as a convex model. 
The decision in this case is to accept or reject the modal truncation of order 
r, depending on the magnitude of the maximum prediction error compared 
against the acceptable error threshold. 

In the absence of damping the dynamics of the full model are described 
by: 

Mx+Kx=Bu (6.12) 

where x(t) and u(t) are the displacement and load vectors. The N normal 
mode vectors 4>1, ... , 4>N, and the corresponding eigenvalues wr, ... , wF,r, sat
isfy the eigenvalue equation: 

(6.13) 

The eigenvectors are normalized as 4>r M 4>j = m;bij. The modal matrix is 
IP = [4>1, ... , 4>Nj. Define Vet) E ~NxN as the diagonal matrix whose ith 
element is (l/m;w;)sinw;t. The displacement vector in response to load u(t), 
for zero initial conditions, can be expressed: 

xCt) = lt IPV(t - T)IPT BU(T) dT (6.14) 

Let S E ~NxN be a diagonal "selector" matrix with ones at positions 
corresponding to the indices of the r modes included in the modally truncated 
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model and zeros elsewhere. The response of the modally-truncated model can 
be represented as: 

e(t) = lt <JlSV(t - r)S<JlT Bu(r) dr (6.15) 

The displacement at a particular node or along a particular direction 
is evaluated as the projection of the displacement vector along a constant 
unit vector"p. Combining eqs.(6.14) and (6.15), the prediction error of the 
truncated model in comparison to the full model is: 

"pT[X(t) - e(t)] ="pT it <Jl JV(t - r) - !V(t - r)st <JlT Bu(r) dr (6.16) 

A(t-T} 

which defines the matrix A. 
We consider a cumulative energy-bound convex model to describe the 

input uncertainty: 

U(o:) = { u(t): 100 
uT (t)u(t) dt :S 0:2 } (6.17) 

U (0:) is the set of load vectors whose integral-square values do not exceed 0: 2 . 

The parameter 0: determines the size of the convex model and the uncertainty 
of the input functions. 

The prediction error of the truncated model must not exceed the threshold 
value of Act": 

(6.18) 

The Cauchy and Cauchy-Schwarz inequalities are employed to determine 
the extremal values of the prediction error, resulting in: 

Combining the performance criterion, (6.18), with the maximum predic
tion error, (6.19), and solving for 0:, results in the greatest allowable uncer
tainty: 

Act" 
0: = -,============================ J f; "pT<JlA(r)<JlT BBT<JlA(r)<JlT"pT dr 

(6.20) 

The rank-r model has acceptable prediction error so long as the input uncer
tainty is no greater than a. Decisions based on the rank-r model are "robust" , 
immune to input uncertainty, up to uncertainty level a. Thus a measures 
the robustness of the decision and the reliability of the reduced-rank model. 

The denominator of eq.(6.20) increases monotonically in time, indicating 
that the reliability of the model decreases with the duration of operation of 
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the system. For short duration the prediction-error is robust to large input 
uncertainty, while for long duration the model is less reliable. 

Let us examine eq.(6.20) for the special case that B = M = I. Define 
Se = 1·- S, and note that S; = Se. Thus 

~2 = [V - svsf = [ScVSe]2 = ScV2Se 

The robustness, eq.(6.20), becomes: 

~ ~cr a=-r================= J J~ ¢T~SeV2Sc~T¢T dT 

(6.21) 

(6.22) 

If the model has full rank, r = N, then Se vanishes and a = 00, indicating 
complete robustness of the prediction error to input uncertainty. As the 
rank decreases, Se becomes fuller and the denominator of eq.(6.22) increases, 
reducing the robust reliability of the model. 

6.4 Robust Multi-Hypothesis System 
Identification 

Engineering decisions are often based on mathematical models, and in the 
previous sections we have evaluated the reliability of such models in terms 
of the robustness of the consequent decisions. But models themselves are 
frequently obtained through a process of measurement and decision. There 
are a plethora of methods and philosophies for system identification, and 
their study is beyond our scope. We will examine the robust reliability of one 
particular approach: system identification based on multi-hypothesis testing. 
We have considered the reliability of specific multi-hypothesis algorithms in 
sections 5.2 and 5.4. We now address the generic problem of evaluating the 
reliability of a model constructed by multi-hypothesis testing. 

In robust reliability we ask the following question: how much uncertainty 
can be tolerated while still assuring acceptable performance? The robust re
liability or robustness is a measure of the maximum acceptable uncertainty. 
Applying this to system identification, the robust reliability of an identifica
tion algorithm is a measure of the maximum uncertainty which is consistent 
with acceptable performance of the 'algorithm. The algorithm is reliable if 
it can tolerate a large amount of uncertainty; it is not reliable if it is fragile 
with respect to uncertainty. 

In this section we will study the robust reliability of multi-hypothesis 
identification of a dynamic system for which empirical input/output data 
are available. The aim is to enable the evaluation and optimization of the 
model-updating procedure. 2 

2The author acknowledges with pleasure many stimulating conversations on this subject 
with Prof. Dr. H. G. Natke, director, and with Dr. Uwe Prells, Curt-Risch Institute for 
Dynamics, Sound, and Measurement, University of Hannover, Germany. 
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6.4.1 System Formulation 

The system we wish to model is characterized by an N-dimensional state 
vector, x(t). and can be excited by an N-dimensional input vector, J(t). We 
have a partially satisfactory initial model for this system. Quite often the 
preliminary model is a linear approximation to the actual dynamic behavior, 
so we will denote the preliminary model by L. 

The dynamic behavior of the system is precisely described by the following 
vector equation: 

L(x, X, x,t) + J(t) = hex, X, X, t) (6.23) 

L is that part of the system which we attempt to describe with the preliminary 
model L, while h represents those features of the system which we have not 
yet identified. For instance, a common circumstance in vibration dynamics 
is that L corresponds to linear vibration dynamics while h arises from non
linearities which frequently arise in joints and bounda~ies. 

Our aim is to identify· the operator h. We are able to perform measure
ments on the system,3 so that for any given input J(t) we can obtain the 
state vector, x(t), and its derivatives, x(t) and x(t). We can then calculate 
the approximation, L(x, x, x, t), to the lefthand part ofthe model, L, for that 
input. 

6.4.2 Uncertainty in the Nominal Model 

The nominal model L is inaccurate, as expressed by an equation-error term 
c: when L in eq.(6.23) is replaced by L: 

L(x, x, X, t) + J(t) = hex, X, X, t) + c:(t) (6.24) 

The uncertainty in the nominal model is represented by a convex model for 
the error vector c:. Many different convex models are available, depending on 
the type of information available. 

One convenient and common convex model is the instantaneous energy
bound model. At each instant, the weighted euclidean norm of the error is 
bounded: 

(6.25) 

where A is a real, symmetric positive definite matrix. 0:' is the uncertainty pa
rameter, controlling the size ofthe convex model and quantifying the amount 
of uncertainty in the calculational model. 

Another convex model, which we will consider in problem 5, is the integral 
energy-bound model. While the model of eq.(6.25) constrains the "energy" 
of the error at each instant, we now constrain the integral of the energy: 

U(O:') = {c:: !aT c:T Ac:dt ~ 0:'2} (6.26) 

3rt may be that instead of measurements we have an empirical input/output model 
which allows us to calculate the state and its derivatives for any class of inputs. 
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The upper limit, T, can be infinity. Note that the uncertainty parameters of 
these two models, eqs.(6.25) and (6.26), have different physical units. 

6.4.3 Multi-Hypothesis Identification 

The data-structure of this problem - being able to perform measurements 
or having an empirical input/output model - is particularly conducive to 
multi-hypothesis testing, which we now describe. 

We demonstrate the general procedure with an example. Suppose the 
system is one-dimensional and that the nominal model is linear: 

(6.27) 

where the coefficients m, (; and k are approximately correct. Let us assume 
that we know that the unknown function h is non-lin~ar and of the following. 
form: 

(6.28) 

However, we do not know the coefficients (b l , b2). We choose r hypothesized 
non-linear models, denoted by their coefficient vectors, b(l), ... , b(r). Apply
ing any input f(t) to the system yields the state and its derivatives, x, x and 
i. This allows us to calculate L( x, x, i), and to approximate the actual value 
of h by L + f. But we can also use x, x and i and eq.(6.28) to calculate h for 
each hypothesis, b(1), ... , b(r). Let us denote these hypothesized h values by 
Ml), ... , her). We now compare each hypothesis against the anticipated h, 
and choose the closest hypothesis. More precisely, we choose the cth model 
if: 

where II . IIw is a weighted euclidean norm, defined as: 

where W is a real, symmetric, positive definite matrix. 

6.4.4 Robustness of Asymptotic Multi-Hypothesis 
Algorithms 

(6.29) 

(6.30) 

In this section we calculate the robust reliability of the multi-hypothesis al
gorithm in the limiting case of a very large number of hypotheses. In the 
next section we extend this analysis to the more realistic situation of a finite 
number of hypotheses. 

As stated earlier, the robust reliability of an identification algorithm is 
the maximum uncertainty which is consistent with acceptable performance 
of the algorithm. Our criterion for acceptable performance of the algorithm 
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is that the normed difference between the identified and actual models be no 
greater than ~cr: 

(6.31) 

In probiem 5 we will consider an integral acceptability criterion. 
We are presently considering the ideal asymptotic case of unlimited hy

potheses, so we can reasonably expect that one of these hypotheses will 
very closely match the calculated response.4 The multi-hypothesis algorithm, 
eq.(6.29), will cause this hypothesized model to be adopted. So, the adopted 
model will satisfy: 

(6.32) 

But the righthand side of this relation is the calculational model, which may 
be in error by as much as f;. When this is so, the normed difference between 
the identified and actual models will be: 

(6.33) 

Let us denote this error by ~asym. How large can this error be? This 
is controlled by the uncertainty in €, which belongs to a convex model. We 
find the maximum error of the identified model, in this asymptotic case, by 
solving the following optimization problem: 

€ E U(a) (6.34) 

For the instantaneous energy-bound convex model of eq.(6.25) this be-
comes: 

~~sym = max€TWf; subject to (6.35) 

This leads to an eigenvalue problem involving the real, symmetric positive
definite matrix A in the convex model, whose solution we developed in sec
tion 4.5.2. Denote the eigenvalues of the matrix W- I / 2 AW- I / 2 by PI ::; 
... ::; PN. One finds the following solution: 

2 T a 2 
~asym = max f; Wf; = -

eEU(a) PI 
(6.36) 

This relation shows that the maximurri error in identifying the model is pro
portional to a, the maximum error in the nominal model, and is inversely 
proportional to the least eigenvalue of W- I / 2 A W- I / 2 , combining properties 
of the convex model and the weighting matrix of the norm. Eq.(6.36) shows 
that the uncertainty parameter a 2 is "normalized" by the least eigenvalue 
of W- I j2AW-I/2. Conversely, we could divide the inequality in the convex 
model of eq.(6.25) by PI, producing a "scaled" A matrix and "re-scaling" the 
uncertainty parameter in units of Pl. 

4There may of course be more than one such hypothesis, but we will ignore this 
possibility. 
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7.1~ q L+1 
~~ / . 

• 

• • • 
Figure 6.2: Illustration of the distance 7] between hypothesized responses, in 
a 2-dimensional search space. 

Relation (6.36) can be used to express the robust reliability of this mul
ti-hypothesis identification algorithm in the asymptotic case of unlimited hy
potheses. The algorithm is acceptable if the maximum error of the model is 
no greater than ~cr, as expressed by relation (6.31). Equating the maximum 
error, eq.(6.36), to the critical value of the error, ~cr, and solving for the un
certainty parameter, a, determines the greatest allowable uncertainty, which 
is the robustness of the algorithm: 

A 2 _ A 2 
Ll.asym - Ll.cr ===} (6.37) 

When iiasym is large the system is robust and can tolerate a large amount 
of uncertainty, implying that the multi-hypothesis identification algorithm is 
reliable. On the other hand, when iiasym is small the identification is sensitive 
to uncertainty and the identification is unreliable. 

Eq. (6.37) indicates that the robustness increases with ~cr: we can tol
erate greater uncertainty as the performance criterion is relaxed. Also, the 
robustness increases with the least eigenvalue of W- 1/ 2 A W- 1/ 2 . 

6.4.5 Robustness of Finite Multi-Hypothesis 
Algorithms 

In practice, we can implement a multi-hypothesis test with at most a finite 
number of hypotheses, so we must modify our asymptotic analysis. In this 
section we calculate the robust reliability of a multi-hypothesis algorithm 
with a finite number of hypotheses. We can no longer expect the multi-hyp
othesis algorithm to supply a model which exactly matches the calculated 
response, unlike the asymptotic case considered in the previous section. We 
will suppose that our hypothesized responses are distributed approximately 
uniformly in a bounded domain of the search space. The distance between 
the best (closest) hypothesized response and the calculated response Z + f 
can be as large as a quantity 7], for which we will develop an expression later. 
That is, the hypothesis chosen by the multi-hypothesis algorithm, h( c), can 
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differ from the calculated response, L + f, by a grid-effect vector g, whose 
length can be as great as 7], as shown in fig. 6.2: 

h(e) = L + f + g (6.38) 

But as ~before, in choosing the hypothesis which is closest to the nominal 
model L, we could also err by a vector €, whose maximum possible norm is 
Llasym , which is the error of the nominal model: 

(6.39) 

Combining the last two relations, the total error in the identified model could 
be as large as € + g: 

h(e) = L + f + € + g 

So, the norm of the error could be as large as: 

Llfin \\h(e) - L - f\\w 
11€+gliw 

< 11€llw + Ilgllw 
Llasym + 7] 

a 
-+7] 
VfIl 

(6.40) 

(6.41 ) 

(6.42) 

(6.43) 

(6.44) 

(6.45) 

As in eq.( 6.37), we calculate the robust reliability of the finite algorithm by 
equating the maximum error of the identification with the greatest acceptable 
error, and then solving for the uncertainty parameter: 

(6.46) 

Comparing this with eq.(6.37), we see that the robustness of the finite mul
ti-hypothesis algorithm is reduced by the grid effect of the finite lattice of 
hypotheses. 

It now remains to develop an approximate expression for TI, the greatest 
possible distance between the calculated response and the closest hypoth
esized response. Suppose we have r hypotheses, h(l), ... ,h(r), which are 
vectors in ~N. We suppose these r liypotheses are more or less uniformly 
distributed in a volume V in N-dimensional space. Thus the volume-per
hypothesis is V / r. The equivalent hypercube with this volume has side
length q = (V/r)l/N. We imagine the hypotheses arranged on the vertices 
of these equivalent hypercubes. The cube-center is the point farthest from 
the vertices. The distance between a vertex (where an hypothesis lies) and 
the cube-center (where the calculated response could lie) is h-JN. So TI is 
estimated as: 

(6.47) 
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Substituting this into eq.(6.46), the final expression for the robustness of a 
finite algorithm with r hypotheses in a volume V of ~N is: 

(6.48) 

When iifin is large the system is robust and can tolerate a large amount of 
uncertainty, implying that the multi-hypothesis identification algorithm is 
reliable. On the other hand, when iifin is small the system is sensitive to 
uncertainty and the identification is unreliable. 

Relation (6.48) shows that the robustness increases as (V/r)l/N with in
creasing number of hypotheses r. When the dimension N of the state space 
is large, this increase can be very slow, indicating the not-surprising need 
for many hypotheses. At the other extreme, when iifin vanishes, the iden
tification algorithm is extremely sensitive to the uncertainty in the nomina,l 
model; even very small error in the nominal model can result in unacceptable· 
error in identifying the remainder, h, of the model. Equating iifin = 0 and 
solving for r results in a minimum tolerable number of hypotheses: 

VN N / 2 

rmin = (2~cr)N (6.49) 

We can understand this expression for rmin as follows. ~cr is a length in ~N: 
the greatest acceptable distance between the chosen and actual models, Me) 

and h. On the other hand, V is the volume in ~N containing the hypothesized 
models. Let the hypercube of volume V have side-length q, so V = qN. Then 
the minimum tolerable number of hypotheses becomes: 

(6.50) 

This is sort of a sampling theorem. If we are searching in a region of side
length q, and seeking model-accuracy ~cr, the minimum acceptable number 
of hypotheses is determined by the ratio q/ ~cr' and by the dimension N of 
the search space. Recall that rmin is a bare minimum, and that we should 
probably use more hypotheses. The utility of additional hypotheses is ex
pressed by the robust reliability, eq.(6.48). 

6.4.6 Hierarchical Multi-Hypothesis Algorithms 

The reliability of multi-hypothesis system-identification increases as we in
crease the number of hypotheses which are tested, as shown in eq.(6.48). If 
the dimension of the search space is large, however, we will need a large num
ber of hypotheses. Nevertheless, it may be possible to reduce the number of 
hypotheses (or increase the reliability) by using an hierarchical structure for 
the test procedure. 
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One qualitative scheme for hierarchical testing is as follows. With a fixed 
total number of hypotheses, we test a sequence of search volumes, each vol
ume chosen on the basis ofthe multi-hypothesis decision of the previous stage. 
Each stagi~ has a limited number of hypotheses. 

Two-stage hierarchy. We begin by examining a two-stage hierarchical 
multi-hypothesis test procedure. We will test a total of r hypotheses, but 
we do not know how many hypotheses to test in the first stage. Suppose 
we begin by testing only rl < r hypotheses, and subsequently choose the 
remaining r2 = r - rl hypotheses on the basis of the first stage. 

Let the initial search volume be VI. From among the rl hypotheses tested 
in the first stage, the selected hypothesis is denoted h(l,e), and its deviation 
from the actual model, h, is bounded above by dfin. Combining eqs.(6.45) 
and (6.47) this becomes: 

Il h(l,e) - hll :::; dfin = ~ + Vii (VI)IIN 
W ..jiil 2 rl 

(6.51) 

The volume V2 of the search region in the second stage should be large 
enough to encompass the correct model. Let us choose this volume equal to 
a hypercube of side-length Q2, so V2 = qr, where we choose the side-length 
on the order of twice dfin to assure that we include the act~al model in the 
search region: 

q2 = P ~ + -- -..!. [ Vii (V ) liN] 
..jiil 2 rl 

(6.52) 

where p is not too different from two. If we choose r2 = r - rl hypotheses 
distributed more or less uniformly in the volume V2 , and if V2 does in fact 
contain the actual model, h, then the error of the estimate will again be no 
more than: 

dfin (6.53) 

~+ Vii (V2)lIN 
JIil 2 r2 

(6.54) 

(}" pJN [(}" Vii (VI) liN] 
..jiil + 2r~/N ..jiil + -2- ~ (6.55) 

For our final decision we require the following bound on the error: 

(6.56) 

Equating eq.(6.55) to d cr and solving for the uncertainty parameter, Ct, we 
obtain the greatest uncertainty consistent with acceptable performance of the 
identification algorithm for this two-stage process with a total of r hypotheses, 
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Figure 6.3: ii2(rdr) versus rl for a 2-stage multi-hypothesis identification. 
Parameter values: p = 2, N = 2, J.lI = 1, ~cr = 1.0. From top to bottom, 
ql = 1,4, 10. 

where rlhypotheses are used in the first stage: 

(6.57) 

where a < rl < r and VI = qi'. With r fixed and with r2 = r - rl, this 
is readily maximized over the integer values a < rl < r. The result is the 
greatest reliability for a 2-stage algorithm with r hypotheses: 

(6.58) 

We also obtain the optimal partition of the number of hypotheses in the first 
and second stages, rl, and r2. 

Fig. 6.3 shows three examples of the variation of ii2( rllr) with rl. The 
initial search volume, VI, increases by a factor of 100 from the top to the 
bottom curve. 

Consider first the top curve, for which the initial search volume is the 
least of the three curves, with ql = 1. The maximum value of the reliability 
occurs at rl = 15, where ii2(rllr) = 0.84. Using eq.(6.48) to calculate the 
one-step reliability with the same parameter values we find iiI = 0.93, so the 
optimal 2-step algorithm is in fact less reliable than the one-step procedure. 

We can understand this as follows. Increasing the search volume will 
always decrease the reliability, as seen from both eq.(6.48) and eq.(6.57), 
while increasing the number of hypotheses will improve the reliability. In the 
first stage of the two-stage process the volume is the same as in the single
stage algorithm while rl = 15 rather than r = 100. In the second stage both 
V2 and r2 are less than in the single-stage process. The multi-stage algorithm 
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we have formulated, with a constant total number of hypotheses, involves a 
trade-off between search volume and number of hypotheses. In the present 
case this trade-off is less optimal than the single-stage search with the same 
volume and total number of hypotheses. 

The initial search volume for the second curve is greater, ql = 4, and 
the optimal two-stage reliability is a2 = 0.78 at rl = 29, while for the one
stage identification the reliability is lower: al = 0.72, so now the two-stage 
algorithm is slightly better than the one-stage test. Finally, the lower curve, 
with ql = 10, has an optimal reliability of a2 = 0.67 at rl = 39. In this 
case, however, the one-stage identification has a reliability al = 029, which 
is substantially poorer than in the hierarchical implementation. 

Recursive Solution for Multi-Stage Hierarchy. We now consider the 
general M -stage hierarchy with a total of r hypotheses and an initial search 
volume VI. The task is to find the partition of the number of hypotheses per 
stage which maximizes the reliability. In the recursive approach we express 
the (M + I)-stage solution in terms of the M-stage s~iution. 

The optimal partition of r hypotheses among M stages is denoted rl, ... , 
rM. This is the partition which maximizes the reliability of the identification, 
and this maximum reliability is denoted aM(r). We have already solved the 
optimal-partition problem for M = 2. 

Now we consider the (M + I)-stage process. Suppose we choose some 
value rl for the number of hypotheses in the first stage. This leaves r -
rl hypotheses to be chosen in the remaining M stages. Let us denote the 
maximum reliability for these remaining M stages as aM(r - rllrt). But we 
already know how to partition a given number of hypotheses in M stages so 
as to maximize the reliability, and the optimal reliability for this M -stage 
process is aM(r-rl). So, having arbitrarily chosen rl hypotheses in the first 
stage of an (M + I)-stage process, the greatest reliability at the end is: 

(6.59) 

To find the overall optimal reliability for the (M + 1 )-stage process we must 
optimize aM+l(r - rt} on rl with r fixed: 

(6.60) 

This is a one-dimensional optimization problem, and yields the optimal par
tition of r hypotheses among M + 1 stages, as well as the maximum reliability 
of the (M + I)-stage process. 
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6.5 Problems 

1. A small mechanical device is subjected to a load which increases ap
proximately linearly in time from zero. The load produces vibration 
ih the device, and it is necessary that the acceleration of the device 
not exceed the critical value of aer for a long duration T. The vibra
tion of the device is modelled as a one-dimensional undamped linear 
mass-spring system: 

mi(t) + kx(t) = u(t), x(O) = x(O) = 0 (6.61) 

The equivalent mass of the model can be estimated accurately, but the 
stiffness is uncertain. The uncertain ramp input belongs to a slope
bound convex model: 

U(a;) = { u(t): u(O) = 0, 1 ~~ - sl ~ a j } (6.62) 

For given uncertainty aj in the load, it is necessary to decide if the 
device will exceed its acceleration limit for a long duration T. Is the 
mass-spring model reliable, and is the decision robust with respect to 
uncertainty of the stiffness? 

2. A manufacturing process involving plastic extrusion is controlled by 
several temperatures and pressures, represented as positive parameters 
P1, ... ,Pr· These parameters are monitored, but they each fluctuate 
within a particular range: 

(6.63) 

where Pi is the nominal value of the ith parameter and Pi > Pi. Expe
rience with the process has shown that if: 

r 

LCiPi ~ Ser 

;=1 

(6.64) 

then the quality of the product is satisfactory. The Cj'S are empirical 
coefficients. (a) Will the process run satisfactorily throughout the range 
of values of the parameters P1, ... , Pr? (b) The performance model, 
eq.(6.64), is empirical, so the coefficients C1, ... ,Cr are approximate. 
How robust is the decision in part (a) to uncertainty in the model 
coefficients C1, ... , cr ? Suppose that each coefficient can vary by as 
much as a fraction a < 1 from its nominal value: 

(6.65) 

(c) Consider a numerical example with three parameters: two tempera
tures and a pressure, whose nominal values (in degrees and Pascals) are 
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(P1' P2' P3) = (150, 230, 2.4). The range parameters are (P1, P2, P3) = 
(3, 6.9, 0.04). The nominal model coefficients are (C1' Ct, (3) = (0.7, 
0.4, -30). The threshold for failure is Ser = 140. Evaluate the robust
ness of the performance model for these parameter values. 

3. t Modification of problem 2. Instead of the linear performance criterion 
of eq.(6.64) consider the following linear-quadratic criterion: 

(6.66) 

where p is the vector of process parameters, c is a vector of empirical 
coefficients and D is a real symmetric matrix of empirical coefficients. 
(a) Will the performance be satisfactory over the range of parameter 
intervals specified by eq.(6.63)? (b) Consider an ellipsoid-bound uncer
tainty model for the process parameters: 

pea) = {p: (p - pf A(p - p) ~ a~} (6.67) 

where p is the nominal parameter vector and A is a real, symmetric, 
positive definite matrix. Will the performance be satisfactory for all 
PEP(a)? 

4. Modify Eq.(6.3) to allow variable tolerance in the fractional error of the 
model along the length of the fin: 

U(a) = {r(v): I ;o(~:) I ~ a(v)} (6.68) 

How should one choose a( v)? 

5. Modify the results of section 6.4 for the integral energy-bound convex 
model, eq.(6.26), and the following integral acceptability criterion: 

(6.69) 

The upper limit, T, can be infinite. (a) Show that the greatest asymp
totic error of the multi-hypothesis algorithm is identical to eq.(6.36), 
though the a's are uncertainty parameters of different convex models. 
(b) Show that the robustness of the asymptotic algorithm will be the 
same as eq.(6.37), and the error and robustness of the finite algorithm 
will be identical in form to eqs.(6.45) and (6.46) respectively. 
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Convex and Probabilistic 
Models of Uncertainty 

The theory of probability is a prize flower in the garden of mathematics. 
Many of the most creative mathematicians have contributed to this theory, 
which is characterized by a subtle combination of intuition and analysis. The 
engineers acquired the theory of probability fairly recently from the scien
tists (who got it from aristocratic 17th century gamblers!) and have found 
it immensely useful. However, as we have seen in the previous chapters, 
probability is not the only mathematical tool with which we can quantify un
certainty. Robust reliability is derived from convex rather than probabilistic 
models of uncertainty. 

The phenomenon of uncertainty can be defined probabilistically, in terms 
of the frequency or likelihood of recurrence of events. But this is not the only 
possible definition. Webster's says that uncertainty is "the quality or state 
of, being uncertain: Doubt", and that uncertain means "indefinite, indeter
minate, ... not reliable: Untrustworthy". The Encyclopedia of Mathematics 
[100, vol. 7, p.302] writes that "mathematical probability may serve as an 
estimate of the probability of an event in the ordinary everyday-life sense, 
i.e. it may render more precise "problematic" statements usually expressed 
by the words 'probably', 'possibly', 'very probably' etc." March analyzes in
dividual and organizational decision making and writes that "Uncertainty is 
a limitation on understanding and intelligence." [64, p.l78]. Galbraith, in 
discussing the design of complex industrial organizations, defines uncertainty 
as an information gap, as "the difference between the amount of information 
required to perform the task and the amount of information already possessed 
by the organization." [44, p.5j The point of dragging out these definitions is 
that "uncertainty" has diverse lexical and intuitive meanings, based on hu
man experience, which are prior to our formulation of a mathematical model 
for quantifying that experience. Probabilistic models of uncertainty, as well 
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as fuzzy models, convex models and other theories, are specific mathematical 
devices for representing various aspects of the phenomenon of uncertainty. 

Convex models are particularly suited to the type of information often 
availahle in mechanical reliability analysis, and robust reliability is based on 
convey models of uncertainty, in contrast to classical probabilistic reliability. 
In this chapter we attempt to understand the basis of the difference between 
convex and probabilistic models of uncertainty. We begin in section 7.1 with a 
riddle which highlights the difference. In section 7.2 we compare the structure 
of probabilistic and convex models of uncertainty. In section 7.3 we identify 
some specific limitations of probability theory in technological applicatibns. 
Finally, in section 7.4 we consider an example illustrative of the dangers of 
incautious probabilistic analysis of reliability. In summary, the proper choice 
of a model of uncertainty, whether probabilistic or convex, depends on the 
type of information which is available about the uncertainty. 

7.1 Uncertainty Is Not Necessarily 
Probabilistic: The Three-Box Riddle 

Statement of the three-box riddle: We know that a prize has been placed in 
one of three closed boxes, but we do not know which box. We are asked to 
choose a box, and if our choice is correct, we win the prize. For convenience, 
let us call the box we choose C. At least one of the two remaining boxes is, 
of course, empty. This remaining empty box we will call E. We will refer 
to the third box as T. Now the Master of Ceremonies, who knows both our 
choice and the correct box, opens E, shows us that it is empty, and gives us 
the option of changing our choice from C to T. The question is: do we have 
any rational basis for revising our choice?l 

The argument against changing our bet, propounded by, say, Mr. Kahn, 
maintains that we had no basis for preferring any of the three boxes before 
E was opened, and we have no basis for preferring among the remaining two 
afterwards. We certainly should not now choose E, because we know with 
complete certainty that the prize is not in E. However, complete uncertainty 
reigns over the disposition of the prize between C and T. There is no rational 
basis for changing our bet, says Kahn. 

In favor of changing the bet is Mr. Prow, who jumps urgently from his 
seat exclaiming that T is now strongly preferred over C. He explains that, 
before the empty box was opened there was equal probability that the prize 
was in any of the three boxes. This implies that the probability that it is in C 
is 1/3 and the probability that it is in either E or T must be 2/3. The M.C.'s 
choice between E and T provides information about the relative probability 
of E to T, but does not alter the probability that the prize is in C. After E 

1 For background on the popular discussion of this riddle see [96]. 
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is opened and shown to be empty, we must conclude that T is the favorite 
over C by two to one. 

To clinch the argument against Kahn, Mr. Prow begs to consider a hy
pothetical situation. Suppose there were 100 boxes rather than only 3. We 
know nothing about the location of the prize so, says Prow, the probability 
of it occurring in any particular box is 1/100. We choose one box, call it C, 
and the M.e. opens 98 empty boxes, leaving closed just C and one remaining 
box, call it T. Since the probability is 99/100 that the prize falls in one 
of the 99 boxes other than C, and all but one of these 99 boxes have been 
eliminated, we must certainly switch our bet from C to T. 

Analyzing this dispute between Prow and Kahn we recognize that Prow 
has made one assumption which, if valid, vindicates his argument. Prow has 
translated his lack of certainty about the location of the prize into proba
bilistic information, by asserting that the probability is equal for each box. 
But this assertion is not the only probabilistic model whic.:.h is consistent with 
uncertainty about the location of the prize. Let us imagine that the M.C. 
has been playing the three-box game daily for years, and that he makes a 
habit of putting the prize in the left-most box 80% of the time, and 10% of 
the time in each of the other boxes. Unless we have prior knowledge about 
the personal habits of the M.C. we would never suspect such behaviour, but 
then again, Mr. Prow is presuming different prior knowledge by adopting the 
equal-probability hypothesis. If the location-probabilities were (0.8, 0.1, 0.1) 
we would still be uncertain about the location of the prize, but we would 
choose the 80%-box and not change our bet when one of the other boxes is 
shown to be empty. 

Mr. Prow's presumption is unwarranted, and his conclusion is unjustified. 
He has been thinking probabilistically about a problem involving uncertainty 
but for which no probabilistic information is available. To clarify this asser
tion, let us consider the infinity of probability models which could govern 
the M.C.'s behaviour, from which Prow has chosen just one. Let Pl and P2 
denote the probability that the M.C. will place the prize in the 1st and 2nd 
box, respectively. The probability for the 3rd box is determined by Pl and P2 
as P3 = 1 - Pl - P2. The triangle in fig. 7.1 delimits the set of all possibilities 
for (Pl ,P2), and the point at (1/3,1/3) represents Prow's assumption. The 
initial information is that the prize is in. one of the three boxes. Beyond this 
we know nothing, so a choice of one probability model over another would 
be arbitrary, not based on available data, and thus not justified, not 'ratio
nal'. Mr. Prow's assumption that (Pl,P2) = (1/3,1/3) is unwarranted and 
his argument, which otherwise is correct, must be rejected. 

It might be objected that the uniform distribution, (Pl, P2, P3) = (1/3, 
1/3, 1/3), is the "most uncertain" and thus justified by our complete lack of 
knowledge about the disposition of the prize. The fallacy in this reasoning 
is that, though the uniform distribution is entropically the "most uncertain" 
from among all probability distributions (as we will shortly explain), the 
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Figure 7.1: The probability triangle. 

choice of this (or any other) particular distribution presumes more informa
tion than we have. To use Galbraith's expression [44], the uncertainty in this 
problem is a matter of the "information gap" between what we know (there 
is only one prize) and what we need to know (where the prize is) in order to 
make a decision. 

Let us consider the concept of entropy. Imagine an experiment which 
can result in one of N possible outcomes. Let Pi, P2, ... , P N denote the 
probabilities of these outcomes. Knowledge of these probabilities constitutes 
information (in the ordinary lexical sense) about the experiment. In statisti
cal information theory one quantifies this probabilistic information with the 
concept of entropy of the distribution, defined as: 

N 

H (Pi, . , . , P N) = - L Pn In Pn (7.1) 
n=i 

The entropy, H, is a non-negative number whose magnitude expresses a 
lack of information about the possible outcome. In the three-box game, with 
N = 3 and Pi = P2 = P3 = 1/3 the entropy is H ~ 1.0986, while if Pi = 0.9, 
P2 = P3 = 0.05 the entropy is less: H ~ 0.3944, corresponding to greater 
certainty about the outcome. If one outcome is inevitable and the others 
never occur (e.g. Pi = 1, P2 = P3 = 0) then the entropy is zero, representing 
the complete certainty of the result. 

Of all distributions Pi, P2, ... , PN, the uniform distribution Pi = P2 = 
... = PN = liN has the greatest entropy. For instance with N = 3, if 
we bias the distribution slightly from the uniform case, say Pi = 0.34 and 
P2 = P3 = 0.33 the entropy decreases from'" 1.0986 for the uniform case 
to '" 1.0985. The uniform distribution has maximum entropy, maximum 
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uncertainty, from among all possible probability distributions. We must em
phatically insist, however, that maximum entropy does not imply complete 
absence of information. The fact that we know a probability distribution is 
itself knowledge about possible outcomes. The uniform distribution is most 
decidedly an expression of information. If we know the distribution is uni
form we will act one way, if we know it is another distribution, we may act 
differently. This is precisely Mr. Kahn's argument: we have no information, 
not even probabilistic, about the three boxes before opening, box E, and no 
information about the two boxes afterwards. The information gap is greater 
than if we knew PI, P2, P3. Hence, there is no rational basis for revising our 
choice from C to T. 

This riddle suggests two conclusions which are important for our discus
sion. First, Mr. Prow disclosed a predilection for the uniform probability 
density function; we found his preference to be unwarranted. Second, the 
riddle hinges on uncertainty, which, as Mr. Kahn argue,s, must be managed 
without recourse to probabilistic reasoning. The uncertainty concerning the 
location of the prize must be analyzed without thinking probabilistically. 
The theory of probability is a collection of mathematical tools for analyz
ing uncertainty; it is not the only method. Uncertainty is not, necessarily, 
probabilistic. 

7.2 Models of Uncertainty: A Comparison 

Both probabilistic and non-probabilistic concepts of reliability, when applied 
to design problems, attempt to optimize the system with respect to the un
certain factors which influence it. Different though sometimes overlapping 
information concerning these uncertainties is required by the two concepts of 
reliability. 

Any probabilistic theory contains two main components: sets of events, 
and a measure-function defined on these sets. Typically, the sets of events 
are quite inclusive. For example, the normal distribution extends over the 
entire real numbers, and probabilities are defined for all subsets. This ex
travagant gaussian assumption - that anything can occur - is tempered by 
the probability density function (pdf) which expresses the relative frequency 
of occurrence of different sets of events'. 

The convex-model concept of uncertainty is also based on sets of events, 
but no measure-function on these sets is defined. Instead, information about 
the uncertainties is invested in the structure of the event-sets. Convex mod
els express the clustering of the uncertain events, while probabilistic models 
quantify the uncertainty in terms of the frequency of recurrence of events. A 
convex model typically contains less information than a probabilistic model 
of uncertainty. 

A convex model is a convex set of functions or vectors, where each element 
of the set represents a possible realization of an uncertain phenomenon. Given 
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specific though limited information which characterizes the uncertain events, 
one can define the set of all functions consistent with this information. This 
set is often convex, hence the name, convex model. In the previous chapters 
we have seen many examples of convex models of uncertainty. For instance, 
the energy-bound convex models define sets of functions consistent with a 
given bound on the energy, while the spectral convex model defines the set of 
all functions consistent with specific spectral information. Envelope-bound 
convex models delimit the range of variation of uncertain functions to be 
consistent with given information, and are a generalization, for functions, of 
the idea of interval-arithmetic for uncertain parameter values. 

The procedure by which one formulates a convex model is basically dif
ferent from the usual method for specifying a stochastic model. In stochastic 
formulations one often chooses the form of the model, e.g. gaussian, and 
then determines the coefficients of that model (mean and covariance in the 
gaussian case). This procedure can work quite well_when the form of the 
model is correct, for then the model-parameters can usually be estimated 
accurately without the need to sample too extensively. This is because, as 
in the gaussian model, the parameters can be related to the bulk of events 
which hover around the mean. 

On the other hand, if the form of the stochastic model is only approxi
mately correct, then the tails of the calibrated stochastic model may differ 
substantially from the tails of the actual distribution. This is because the 
model-parameters, related to low-order moments, are determined from typi
cal rather than rare events. In this case, design decisions will be satisfactory 
for the bulk of occurrences, but may be less than optimal for rare events. It 
is the rare events - catastrophes, for example - which are often of greatest 
concern to the designer. The sub-optimality may be manifested as either an 
over-conservative or an unsafe design. 

We have explained that probabilistic and convex models of uncertainty 
are structurally different. The former involve probability densities defined on 
sets of events. The latter involve no measure-functions, but instead exploit 
available information about the uncertainty to characterize the clustering of 
events. However, this difference can sometimes be viewed as a matter of 
degree. In the example of section 7.4 we will use a convex model to de
fine a set of allowed probability density functions. An ambient pressure is 
known to be uncertain, an approximate pdf for this pressure is available, and 
a convex model describes the set of all possible densities. One could legiti
mately view this hybrid probabilistic-convex model of uncertainty as simply 
a collection of probabilistic models. One must recognize, however, that we 
have no probabilistic information describing the frequency of occurrence of 
the different probability densities occurring in the convex model. This is 
more a matter of taste than substance. The crucial point is the wide range 
of set-theoretic possibilities for representing uncertainty without specifying 
probability, and the affinity of set-theoretic uncertainty models to the in-
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formation (or lack thereof) in many technological contexts. Furthermore, 
seemingly similar probabilistic and convex models of uncertainty can have 
very different implications for design and reliability. However, we must first 
discuss the limitations of probability theory which sometimes arise in tech
nological applications. 

7.3 Limitations of Probability 

The mathematical theory of probability has proven useful in many technolog
ical applications. However, it has limitations which, when clearly identified, 
facilitate our understanding of the non-probabilistic alternatives.2 

One criticism of probabilistic concepts of uncertainty arises in discussion 
of prior probability and Bayesian inference and decision theory. A classical 
objection to Bayesian statistics hits at the source of the prior distribution and 
utility functions. As Isaac Levi asserts: "Strict Bayesians are legitimately 
challenged to tell us where they get their numbers." [58, p.387]. In outlining 
"the general statistical decision problem", Fenstad notes that "[T]he difficulty 
arises in connection with the prior measure .... Does every set of alternatives 
carry a probability?" [41, pp.2-3] and if so, what does it mean? Furthermore, 
uniqueness in formulating prior distributions is illusive: a given quantity 
of prior information is often not represented by a unique prior probability 
distribution [85]. This is precisely the difficulty confronted in the 3-box riddle. 

Before the twentieth century, it was common to identify ignorance of like
lihoods with equality of probabilities. Many of Lewis Carroll's probabilistic 
riddles are based upon this assumption [26]. Also, it appears in the solu
tion of Buffon's needle-problem, from the 18th century. On Buffon's solution 
Coolidge has remarked that Buffon failed to recognize "the great dangers in
volved in assuming the equally likely" [30]. John Venn also used the uniform 
distribution as the fundamental device for describing lack of information. He 
recognized, however, that "[a]ny attempt to draw inferences from the as
sumption of (uniform) random arrangement must postulate the occurrence 
of this particular state of things at some stage or other. But there is often 
considerable difficulty, leading occasionally to some arbitrariness, in deciding 
the particular stage at which it ought to be introduced." [99, p.97]. We hear 
the echoes of Mr. Kahn's objection to Mr. Prow's argument based on equal 
prior probabilities. 

The difficulty of quantifying prior knowledge is seen quite clearly in such 
quandries as the 3-box riddle, the prisoner's dilemma [51] and similar prob
lems [45] where alternative decisions each seem fully consistent with the initial 
information. Considering the criticism of Bayesian priors, together with these 
riddles whose formulation is sparse and simple yet whose resolution has taxed 
the attention of many people, one may be inclined to agree with Kyburg that 
"it might be the case that some novel procedure could be used in a decision 

2This section is based in part on [16]. 
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theory that is based on some non-probabilistic measure of uncertainty." [55, 
p.1891· 

Perhaps such thinking as this led Suppes and Zanotti to stress the "dis
tinction between indeterminacy and uncertainty". Their concepts of upper 
and lower probabilities "are defined in a purely set-theoretical way and thus 
do not depend ... on explicit probability considerations." [93, p.427]. They 
continue: 

For a strict Bayesian there is no indeterminacy, for he would pos
tulate a prior probability . .. and thereby obtain a standard ran
dom variable . .. . The concept of indeterminacy is a concept for 
those who hold that not all sources of error, lack of certain knowl
edge, etc., are to be covered by a probability distribution, but may 
be expressed in other ways, in particular, by random relations as 
generalizations of random variables, and by the resulting concepts 
of upper and lower probabilities. [93, p.434]. 

In a different vein, we must mention the reductionist view, as expressed by 
De Finetti: "Probabilistic reasoning - always to be understood as subjective 
- merely stems from our being uncertain about something." Uncertainty is 
the more primitive concept, while probability is a mathematical construc
tion: "probability does not exist" [32, p.x]. Indeed, in Kolmogorov's 1933 
axiomatization of probability, this theory is put in its "natural place, among 
the general notions of modern mathematics", with no more than a passing 
reference to the "concrete physical problems" from which probability theory 
arose. [54, p.v]. This formalistic attitude might suggest the possibility of 
other mathematical theories describing the same phenomena yet subject to 
different, non-probabilistic, interpretation. (De Finetti, however, does not 
seem to have this in mind [31].) 

Let us consider the statisticians themselves. The theories of distribution
free inference and non-parametric statistics [47, 50] are motivated by the need 
to draw conclusions without assuming specific probabilistic properties for the 
underlying populations from which data are drawn. One can not impute 
'non-probabilistic' tendencies to the proponents of these statistical theories. 
However, the considerable interest in non-parametric statistics attests to the 
difficulty one may encounter in imI1lementing, or justifying, those statistical 
methods which are based on assuming specific prior or conditional probability 
distributions. 

One of the primary driving forces in the origin of non-probabilistic models 
of uncertainty in the engineering community has been precisely this difficulty. 
Referring to turbulent wind fluctuations acting on transport aircraft or tall 
buildings, Sobczyk and Spencer [86, p.89] enumerate numerous complicating 
factors and conclude that "the engineering analysis of fatigue reliability as
sumes some standard representations of the spectrum of a turbulent wind." 
(Italics in the original). The assumption of standard representations arises 
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from the difficulty of verifying more specific models. Considering steel off
shore platforms they assert that "the establishment of standard load spectra 
... [is] much more difficult than for aircraft structures." 

In a similar vein, Murota and Ikeda develop a theory for buckling of 
trusses with geometrical imperfections, and comment that they 

have employed random imperfections ... although it is somewhat 
hypothetical at this stage, since the probability distribution can
not be known precisely in practice. The present analysis is not 
independent of the hypothetical distribution, and the quantita
tive aspects of the results will have limitations in applicability. 
However, the qualitative aspects of the conclusions will remain 
valid for a wide range of probability distributions. [67]. 

Design-for-reliability would seem to depend on quantitative results, not only 
qualitative ones. 

Probabilistic models have been used in recent decades to represent the 
uncertainty of vibrating structures [36, 88] and seismic ground motion [89, 
106]. The concern about these models arises from the fact that a stochastic 
model represents typical events much more reliably than rare events, espe
cially when the model is based on limited information. In discussing fatigue 
failure of offshore structures, Hartt and Lin comment that it is the "extreme, 
infrequent stress excursions which may be important either with regard to 
direct damage or to subsequent interaction effects." [49, p.91]. Rare events 
in probabilistic models are described by the tails of the distribution, while 
probability distributions are usually specified in terms of mean and mean
variation parameters. This makes probabilistic models risky design tools, 
since it is rare events, the catastrophic ones, which must underlie the reliable 
design. 

Finally, let us consider an attitude to uncertainty arising in the realm of 
operations research. 

When a probabilistic description of the unknown elements is at 
hand, ... one is naturally led to consider stochastic models. When 
only partial information, or no information at all, is available, 
however, there is understandably a reluctance to rely on such 
models. In presuming that prob'ability distributions exist they 
seem inherently misdirected. Besides, the problems of stochastic 
optimization that they lead to can be notoriously hard to solve. 
[79, p.119] 

This expresses quite clearly the difficulty with probabilistic analysis of the 
3-box riddle. 

We have seen numerous suggestions, both among philosophers and tech
nologists, that one's thinking about uncertainty can, and sometimes should, 
be non-probabilistic. 
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7.4 Sensitivity of the Failure Probability: An 
Example 

Let us:onsider failure by rupture of a long cylindrical tube subject to uncer
tain internal pressure, P. From the perspective of probabilistic reliability, we 
wish to choose the wall thickness to assure that the probabilility of failure is 
no larger than a specified value. However, we do not precisely know the prob
ability density function (pdf) of the pressure. We will see that small errors 
in the pdf can lead to large errors in the probability of failure. This sect jon 
is based in part on [14). A similar example, with a different formulation of 
the uncertainty, is discussed in [20, pp.1l-13). 

7.4.1 Uncertainty in the PDF of the Load 

The equivalent stress for Tresca's maximum shear..s~ress failure criterion is: . 

O'eq = Pip, where p = (r~ - r?) /2r~ (7.2) 

where r1 and rz are the inner and outer radii, respectively. Failure occurs 
if O'eq exceeds the yield stress, O'y. If the wall thickness, h, is very small, 
h = r2 - r1 ~ rl, then p :::::J hlr1. 

We suppose that the pdf of the pressure is in fact a complicated and 
imprecisely known function. For design purposes, however, we approximate 
the pdf as an exponential density: 

(7.3) 

In fact the real pdf is: 

(7.4) 

where 1](p) is an unknown function, and ~ is a constant which normalizes the 
pdf: 

(7.5) 

If 1](p) is constant, then fo and ff! are identical. If 11](p) I ~ /30, then fo(p) 
would seem to be a good approximation to f'l (p). 

We will use an envelope-bound convex model to represent the allowed 
range of variation of the functions 1](p). The set of possible 1]-functions is: 

(7.6) 

where 1]1 (p) and 'l)2(P) are known non-negative functions3 which envelop the 
range of variation of the perturbation, 1](p). 

3 Care must be taken in the choice of 111 and 112 to assure that each iT] is always non
negative and normalizable by €. 
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The mean of P on lo{p) is 1//30 . Employing eq.(7.5) one finds that the 
mean of P on IrJ is: 

Ef. (p) = ~ + roo (p _ ~) 17(p)e-f3oP dp 
/30 10 /30 

(7.7) 

If the perturbation, 17CP), is small, or occurs far out on the tail of the expo
nential, then the means of 10 and IrJ are nearly equal. 

The maximum mean, for any 17 in :1", occurs when 17(P) switches from the 
lower to the upper envelope when the rest oftbe integrand of eq.(7.7) changes 
sign from negative to positive: 

maxEf(p) = ~+ {l/PO(p_~)17I(p)e-f30PdP 
rJE:F' /30 Jo /30 

+ roo (p _ ~) T/2(p)e~fJoP dp (7.8) 
11/ Po f30 

Let us choose the following envelope functions, for which one can verify 
that the densities IrJ(p) are non-negative and normalizable by e for all 17-
functions if II is sufficiently small. 

o 
P < PI 
P 2: PI 

(7.9) 

(7.10) 

The actual pdf decays exponentially like 10 up to a pressure PI, beyond which 
the form of the pdf may deviate from 10. When II is small and PI is large, :I" 
defines small uncertain deviations from 10. 

Assuming PI 2: 1/ f3o, one finds the maximum expectation on IrJ , for 
17 E :1", to be: 

maxE () = ~ [1 + IIPI/3ob + /30) - 'Ye-POP1] 
flE:F f. P /30 b + f30)2 

(7.11) 

For example, let /30 = 'Y = 1, PI = 4 and lJ = 10-3 . Then EfoCP) = 1, 
while max'l Et. (p) - Eto (p) ~ 3.2 x 10-:5 . Thus the actual pdf is exponential 
over 4 standard deviations, up to P = PI, and the fractional error of the 
mean is quite small, only 3.2 x 10-5 . In this example it would be difficult 
to distinguish between 10 and 1'1' for any 17 E:F. Yet we will see that the 
failure probabilities and design decisions can be quite different for the various 
probability densities allowed by :F. 

7.4.2 Sensitivity of the Failure Probability 

The probability of failure by yielding equals the probability that the pressure 
will rise to such a level that the equivalent stress will exceed the yield stress. 
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For pdf frj, the probability of failure is: 

f{>f'/ = Prob (O'eq ~ O'y) = Prob (P ~ O'yp) = rXJ 
frj(p) dp (7.12) 

Jqyp 

= e-fJOqyP + 100 [H(p - O'yp) - e-.BoqyP] 1](p)e- fJoP dp (7.13) 

where e from eq.(7.5) has been substituted into eq.(7.4), and where H(:c) = 1 
if:c ~ 0, and H(:c) = 0 otherwise. The first term in eq.(7.13) is the probability 
of failure based on the nominal pdf of the pressnre, fo; the second term 
expresses the contribution of the uncertainty in frj(p). 

It is an elementary matter to evaluate the greatest probability of failure, 
for any q-function in:F. The maximum of f{>f'/ in eq.(7.13) occurs when 1](p) 
switches from its lower to its upper envelope as th.e term in square brackets. 
changes in sign from ·negative to positive. Assume that O'yP ~ Pl' One 
finds the maximum probability offailure, with the envelopes of eqs.(7.9) and 
(7.10), to be: 

(7.14) 

(7.15) 

Let us consider the thin-walled· case, so P ~ h/rl. From the strict prob
abilistic point of view, it is reasonable to choose the tube-wall thickness, h, 
on the basis of the available probabilistic information, fo(p), One chooses h 
to achieve a specified probability of failure, f{>o, from eq.(7.13) with 1] = 0: 

(7.16) 

Combining eqs.(7.15) and (7.16), we can relate the maximum probability of 
failure, ip, to the nominal probability of failure, f{>o, as: 

~ II (1 - f{>o) e- fJoP1 
f{> = f{>o + Po + "Y (7.17) 

The maximum probability of failure, ip, can be substantially greater than 
the value, f{>o, upon which the wall-thickness is chosen in the nominal prob
abiJistic analysis. For example, choose 1 = Po = 'Y and II = 10-3 as before. 
If the desired probability of failure is f{>o = 10-6 and the disturbance in f(p) 
appears at four standard deviations from the origin (Pl = 4), then eq.(7.17) 
indicates that ip/f{>o = 10.2. That is, the actual probability of error could be 
as much as 10 times the design value. ip is of course still a small number, but 
not as small as f{>o. 
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7.4.3 Design Implications 

Let us continue with the thin-walled case. In the nominal probabilistic anal
ysis the wall-thickness is chosen by inverting eq.(7.16) as: 

(7.18) 

If we include the non-probabilistic information about the uncertainty in the 
pdf, namely the convex model :F, then the waD thickness is chosen by equating, 
rp to <Po and inverting eq.(7.15): . 

hem = -~ In <Po - ( 
{3ouy 1- ( 

(7.19) 

where (= vexp( -{30Pl)/({30 + 1'). (Note that eq.(7.15-) eannot be solved for 
h unless ( < <Po. However', this is an artifact of the thin-wall restriction.) 

It is noV\' possible to compare the strict probabilistic design, hp, with 
the probabilistic design which has been augmented by a convex model for 
uncertainty in the pdf of the pressure, hem. For example, suppose 1 = {3o = 1', 
v = 10-3 and PI = 4 as before. Then ( = 9.158 X 10-6 , and (augmented) 
thin-walled designs are available at any reliability !.po > (. For example, a 
probability of failure of !.po = 10-5 results in a ratio of the design thicknesses 
of hcm/hp = 1.2; the ordinary probabilistic design is 20% too thin. 

The strict probabilistic design is under-conservative in this example be
cause the actual pdf functions, f'l/(p), are all biased (very slightly) towards 
higher pressures than the nominal pdf, fo(P). If the functions TJ(p) were 
slightly negative rather than slightly positive the reverse situation would 
arise: the strict probabilistic design would be overly conservative. 

The point of this example is that very small uncertainties in the pdf, 
located far from the bulk of events, are difficult to detect but cause substantial 
inaccuracy in both design-decisions and assessment of failure-probability. 

7.5 Problems 

1. Following is a riddle posed and "solved" by Lewis Carroll [26, riddle 
72}. Is his argument correct? If not, where are his errors? 

"A bag contains 2 counters, as to which nothing is known 
except that each is either black or white. Ascertain their 
colours without taking them out of the bag." 

Answer: "One is black, and the other white." 

Solution: 
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"We know that, if a bag contained 3 counters, 2 being 
black and one white, the chance of drawing a black one would 
be 2/3- and that any other state of things would not give 
this chance. 

"Now the chances, that the given bag contains (a) BB, 
(f3) BW, (-y) WW, are respectively 1/4, 1/2,1/4. 

"Add a black counter. 
''Then the chances, that it contains (a) B B B, (f3) B W B, 

(-y) WWB, are, as before, 1/4,1/2,1/4. 
"Hence the chance, of now drawing a black one, 

1 1 2 1 1 2 
=-·1+-·-+-·_=-

4 2 3 4 3 3 

"Hence the bag now contains BBW (since any other state 
of things would not give this chance. 

"Hence, before the black counter was added, it contained 
BW, i.e. one black counter and one white." 

2. Modification of the 3-box problem. Suppose that we have imprecise 
probabilistic information about the location of the prize. Let Pi be the 
nominal probability that the prize is in the ith box, where PI +P2 +P3 = 
1. However, these values are uncertain, and are constrained to the set: 

(7.20) 

Given values (PI' P2)' we will choose the box whose probability is higher. 
(a) Evaluate the robustness of this decision with respect to the uncer
tainty ct. That is, what is the greatest value of a such that the decision 
is the same for any doublet (PI,P2) E P(a), if a < a? In other words, 
how much uncertainty can the decision algorithm tolerate without alter
ing the decision? (b) The robustness is zero when PI = P2 = P3 = 1/3. 
Discuss the implications of this for the original 3-box problem. 
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Chapter 8 

Robust Reliability 
and the Poisson Process 

Throughout the first 6 chapters we have exclusively used convex models of 
uncertainty. The primary practical motivation for avoiding the use of proba
bilistic models is the frequent lack of sufficient information to verify the choice 
ofthe probabilistic model. In chapter 1 we demonstrated that even small in
accuracies in the probability density can have far reaching repercussions on 
the reliability analysis. 

In some situations, however, one does have information with which to 
select a probabilistic model. In particular, events distributed in time or 
space as discrete occurrences can sometimes be described by the Poisson 
process or one of its extensions, whose basic assumption may be tested against 
fragmentary prior knowledge about the process. In this chapter we discuss 
the exploitation of this sort of probabilistic information in conjunction with 
robust reliability analysis based on convex models. That is, we will consider 
a hybridization of probabilistic and robust reliability. We assume that the 
reader is familiar with the basic concepts of probability. 

In section 8.1 we derive and discuss the Poisson distribution. In section 8.2 
we develop a hybrid robust-probabilistic reliability analysis of a dynamic 
system with uncertain loads. In section' 8.3 we do the same for a thin-'walled 
shell with uncertain geometrical imperfections. Finally, in section 8.4 we 
combine probabilistic and convex uncertainty information in studying fatigue 
reliability. 

8.1 The Poisson Distribution 

The Poisson process attempts to describe the probability distribution of dis
crete events scattered along the time axis or distributed in space. For in
stance, the events can be occasional large load transients on a turbine occur-
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ring at discrete points in time, or material imperfections occurring at various 
points on the surface of a shell. 

The Poisson process is based on a single very simple hypothesis. Consid
ering events occurring in a random time sequence, the assumption underlying 
the Poisson model is that the probability of an event in an infinitesimal dura
tion dt is independent of past events and equals A dt, where A is a constant. 
If the events are distributed in space rather than time we replace dt by a 
infinitesimal volume dv. 

Obviously, this hypothesis need not always be true. It can happen that 
an event at one instant influences the probability of subsequent occurrences, 
thus violating the assumption of independence. Or the coefficient A may vary 
in time or space. However, one can imagine situations in which the Poisson 
hypothesis holds true. Furthermore, by combining the Poisson model with 
convex models we will be able to combine the power of the Poisson approach 
with the advantages of set-models in describing complex uncertainties. 

The Poisson probability of exactly n events in a duration t is denoted 
Pn(t), where t is a continuous non-negative variable and n = 0, 1, 2, .... The 
form of the functions Pn (t) can be derived as follows. n events can accumulate 
in a duration t + dt in anyone of the following mutually exclusive pathways: 

1. n events occurred up to time t and no event occurred' during the in
finitesimal interval (t, t + dt). 

2. n-1 events occurred up to time t and exactly one event occurred during 
(t, t + dt). 

3. n - 2 events occurred up to time t and exactly two events occurred 
during (t, t + dt). 

and so on. 
The probability of an event during (t, t + dt) is, by the basic Poisson 

assumption, Adt. Consequently, the probability of an event not occurring 
during (t, t + dt) is 1 - Adt. Furthermore, the probability of two events 
occurring during (t, t + dt) is (Adt)2, which we see is much smaller than Adt 
since dt is an infinitesimal. 

Putting this all together, we obtain a probability-balance equation for the 
Poisson distribution [40): 

Pn(t + dt) = Pn(t)(1- Adt) + Pn-1(t)Adt + O(dt2) +"', n = 0, 1,2, .... 
(8.1) 

The lefthand side is the probability of n events in the duration t+dt. The first 
term on the right corresponds to pathway 1, the second term to pathway 2, 
and the third term to pathway 3. Dividing by dt, taking the limit dt -+ 0, 
and re-arranging we obtain the following set of differential equations: 

(8.2) 
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We define P- 1 = O. 
Usually, the initial number of events is zero, so the initial condition for 

(8.2) is expressed with the Kronecker delta function as: 

One can prove by induction that the solution of eqs.(S.2) is: 

().t)ne-'>"t 
Pn(t) = 1 ,n = 0, 1,2, '" 

n. 

This is the Poisson distribution. 

(S.3) 

(S.4) 

We now consider a simple example illustrating the use of the Poisson 
distribution. 

Example 1 Discrete load cycles are applied to a structure which accumu
lates an increment 8 of damage after each cycle. Failure occurs if the cumu
lative damage level exceeds aero The load cycles are distributed in time as 
a Poisson process. We will determine the probability of failure up to time 
t, and the average and standard deviation of the damage level at time t. 
Then we will evaluate the probability of failure in an infinitesimal interval 
(t, t + dt). With this result we can determine the mean and variance of the 
time to failure. 

(a) Failure occurs when the number of cycles exceeds N F = aer/ /). The 
number of cycles is distributed in time as a Poisson variable, so the probability 
of n load cycles occurring in duration t is Pn(t), eq.(S.4). Consequently, the 
probability of failure in duration t is the probability of at least N F cycles: 

Pr{t) = L Pn(t) (S.5) 
n?,Np 

().t)ne-'>"t 
(S.6) L: n! n?,Np 

(b) The damage is a function of the number of cycles which have occurred: 

aCt) = net)/) 

Thus the mean damage in time tis: 

E[a(t)} = E[n(t)]/) = ).t/) 

wher~ EO is the expectation operator. 
The variance of the damage is evaluated as follows: 

0'2 (a(t)) = E[a 2] - E[af 
= 82E[n2]_ 82E(n)2 

82 ).t 

(S.7) 

(S.S) 

(S.9) 

(S.10) 

(S.l1) 
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(c) Failure occurs in the infinitesimal interval (t, t + dt) if the critical 
damage level is reached for the first time in that interval. The probability of 
this is the probability of reaching one less than the critical number of cycles 
sometime in the duration t, and then reaching NF during (t, t + dt): 

J(t) dt = [PNF-l(t)] x [,\ dt] (8.12) 

(8.13) 

(d) We can calculate the moments of the time to failure as the moments 
of J(t). The mean time to failure is: 

E(t) = l co 
tJ(t) dt 

,\NF [CO tNF -Xt dt 
(NF-1)!Jo e 

NF 
,\ 

To calculate the variance we need the second moment: 

E(t2 ) = 100 
t 2 J(t) dt 

,\NF [CO tNF+le-Xt dt 
(NF -l)!}o 

(NF + l)NF 
,\2 

So the variance of the time to failure is: 

• 

(8.14) 

(8.15) 

(8.16) 

(8.17) 

(8.18) 

(8.19) 

(8.20) 

8.2 Dynamic System with Uncertain Loads 

Let us consider a dynamic system subject to recurring unknown time-varying 
loads. Each load cycle is of duration T, and the uncertainty in the waveform 
of tl,1e load is represented by a convex model. The recurrence of the load cycles 
is distributed randomly in time as a Poisson process. Each load cycle deposits 
a variable amount of energy in the system, depending on the waveform of the 
input. The system fails when the cumulative deposited energy exceeds a 
threshold, Ecr . We will evaluate the robust reliability of this system, using 
both the convex and the probabilistic information about the uncertainties. 
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The system is described as a sub-critically damped one-dimensional os
cillator: 

mx(t) + ex(t) + kx(t) = tI(t), x(O) = x(O) = 0 (8.21 ) 

The response at time t is given by eq.( 4.103) (p.87). The energy dissipated 
by the system in a duty cycle due to the damping term, ex, is expressed 
by eq.( 4.104) (p.87). For the initial conditions we have chosen, x can be 
expressed as: 

x(t) = it U(T") dG(~t- T") dT" (8.22) 

where G(t -T") is defined in eq.( 4.110) (p.88). Combining these relations, the 
energy absorbed in one duty cycle is: 

rT ( t dG(t T") )2 
E = e 10 10 U(T") dt dT" dt 

We will represent the input as a truncated Fourier series: 

U(t) 
N 

L f3 kn7rt 
cos-

n T 
n=l 

(8.23) 

(8.24) 

(8.25) 

where the kn are integers, i(t) is a vector of known cosine functions and f3 is 
a vector of unknown Fourier coefficients. We adopt an ellipsoid-bound model 
for the uncertainty in f3: 

(8.26) 

W is a postive definite real symmetric matrix. 
The energy deposited in the damped vibrating system, eq.(8.23), can be 

expressed as: 

E = elF iT (i\(T")dG(~t-T") dT") (l\T(B)dG(~t-B) dB) dt f3 
... J ..... 

Z 

(8.27) 

(8.28) 

where Z is a real symmetric matrix which can be evaluated from prior infor
mation. 

The greatest amount of energy which can be deposited in a single duty 
cycle is the solution of the following optimization problem: 

Emax = maxcf3T Zf3 subject to f3 E U(o:) (8.29) 
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Using the Lagrange optimization method, one finds the following solution: 

(8.30) 

Let lIma { denote this maximum eigenvalue. 
The system fails when the accumulated energy absorbed from a sequence 

of load cycles exceeds the critical value Ecr . The load cycles are distributed 
randomly in time according to the Poisson process, but the amount of energy 
dissipated per load cycle depends on the input function, u(t), which varies 
over the convex model U(a). We have no probabilistic information abo'ut 
u(t) or about the amount of energy E dissipated per cycle, which varies on 
an interval: 

(8.31 ) 

In other words, we do not have enough information to calculate the proba
bility of failure in a given duration. 

However, we can calculate a hybrid robust-probabilistic reliability. 
In order for failure in n cycles to be possible, the load uncertainty must 

be large enough so that, given maximal energy dissipation in each load cycle, 
the cumulative energy exceeds the critical value: 

(8.32) 

Solving this for a we find the critical value of a for failure in n cycles: 

~cr an = ---
ClImaxn 

(8.33) 

We require the system to survive at least as long as 8. Using the Poisson 
model, we can calculate the probability, Pn(8), that n cycles will occur in 
the duration 8. Failure can occur in one or more cycles, but failure cannot 
occur in zero cycles. So, we "randomize" an on the Poisson distribution, 
re-normalized to n = 1, 2, .... That is, we calculate the average robustness 
for lifetime 0: 

(8.34) 

(8.35) 

an is the robust reliability for failure in n load cycles, and a is the average 
of the an's weighted by the Poisson probability that n cycles occur during 
the lifetime 0. When a is large the system can tolerate a great amount of 
uncertainty in the load functions without failing, while a small value of a 
indicates fragility to variation of the loads. a is therefore a robust reliabil
ity, though it also incorporates a modicum of probabilistic information: the 
Poisson distribution in time of the load cycles. 
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8.3 Shells With Geometric Imperfections 

A thin-walled cylindrical shell is quite sensitive to geometrical imperfections. 
Even small defects can lead to substantial reduction in the buckling load. We 
have studi(!d the robust reliability of shells in sections 3.5 and 4.5. In this 
section we will combine probabilistic and convex models of uncertaint.y in a 
hybrid reliability analysis. 

One can think of the geometric imperfections as small point defects scat
tered randomly over the surface of the shell. The Poisson process provides a 
simple but sometimes plausible probabilistic description of the spatial distri
bution of defects, whose validity is fairly easy to test. 

Adopting the Poisson model, let Pn{A) be the probability of exactly n 
defects in an area A on the surface of the shell, given by eq.(8.4) with t 
replaced by A. 

For the moment we suppose that all the defectsJ:l.re identical in shape, 
each one covering an area Acr and of amplitude o. We suppose that the shell 
will fail if the total imperfection amplitude at any point exceeds the critical 
value ~cr. In other words, the shell will fail if the number of defects whose 
centers fall in an area Acr exceeds the critical value: 

N - ~cr 
cr - 0 (8.36) 

The probability of failure is the sum of probabilities that the number of 
defects in an area Acr ·is Ncr or more: 

Pr = L Pn(Acr) (8.37) 
n?Ncr 

This analysis is valid as far as it goes, if the Poisson model has been 
verified. However, it ignores the uncertainty in the shape of the imperfec
tions. These dents, scratches and bends are generally inordinately compli
cated, and probabilistic information about their shape-uncertainty is expen
sive and scarce. It is natural to quantify the uncertainty in the shape of the 
defects with a convex model, as we have done in earlier chapters. We will 
then no longer be able to calculate a completely probabilistic reliability, but 
we will develop a hybrid robust-probabilistic measure. 

Let 1](1') represent the profile of imperfection-amplitude on the shell sur
face. We will use a uniform-bound convex model to represent the uncertainty 
in the imperfection functions 1](1'), in terms of a radial tolerance: 

H (Of) = {1]( r): 11]( r ) 1 ::; Of} (8.38) 

H(Of) contains imperfections whose amplitude varies in an unknown manner 
on the shell surface, but whose maximum amplitude is never greater than 
the uncertainty parameter Of. 
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Suppose there are n defects centered in an area Acr, and that their im
perfection profiles are 1J1(r), ... , 7Jn(r). Continuing with the failure criterion 
underlying eq.(8.36), failure can occur with n spatially uncertain imperfec
tions if: 

n 

m;x L 1]i(X) ~ ~er (8.39) 
;=1 

The convex model allows the maximum on the left to be as large as na, so 
failure can occur with n defects if the uncertainty parameter is at least as 
large as: 

~cr ( ) an = - 8.40 
n 

We are unable to calculate the probability of failure, since we have no 
probabilistic information about the imperfection profiles 7J(r). However, an 
is the maximum amplitude-uncertainty which can be tolerated if n defects 
are present in an area 4cr. Likewise, Pn(Acr) is theptobability that n defects 
will fall in an area Aer . So, like in eq.(8.34), we can randomize an on the 
re-normalized Poisson distribution: 

(8.41 ) 

(8.42) 

8.4 Damage and Annealing Processes 

The Poisson process is the prototype of a wide class of stochastic models 
known as birth and death processes [40]. In the Poisson model, random events 
accumulate independently, governed by the probability>. dt of an occurrence 
in any infinitesimal interval dt. An immediate generalization is to consider 
two different types of events, also occurring independently, one causing accu
mulation and the other annihiliation of the inventory of events. This type of 
model is attractive for describing fatigue processes in which both damage and 
annealing occur. Combining this with a convex model for the uncertainty of 
the load functions, we will develop it hybrid robust-probabilistic analysis of 
fatigue reliability. 

8.4.1 Birth and Death Process 

The birth and death process was originally developed by Galton in the 19th 
century is calculate the probability of disappearance of family names [40]. It 
has been used to model diffusion, ecological processes, neutron dynamics in 
nuclear reactors [103] and many other areas. We will formulate the birth and 
death process as a simple representation of damage evolution with repair. 
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We will study the reliability in section 8.4.2, and again in section 8.4.3 with 
an extended birth and death modeL 

Let n represent the net state of damage, as the difference between the 
number of damage increments and the number of annealing increments: 
damage-minus-annealing. We will suppose that the extent of both damage 
and of annealing is unlimited, so that n = ... - 2, -1,0, 1,2, .... 

Let>. dt be the probability of an increment of damage in the infinitesimal 
duration dt and let /l dt be the probability of an increment of annealing in dt. 
Assume that all events, both damage and annealing, are independent. Pn(t) 
is the probability of damage state n at time t. In analogy to eq.(8.1), we can 
write the following probability-balance equation: 

Pn(t + dt) = Pn(t)(l- >. dt - /l dt) + Pn- 1 (t). dt + Pn+1(t)/l dt + O( dt 2 ) + ... 
(8.43) 

for n = ... - 2, -1, 0, 1, 2, .... This balance of probability states that the 
damage state can reach the value n in a duration t + dt by anyone of several 
pathways: (1) reaching n up to time t with no change in the subsequent 
dt; (2) reaching n - 1 up to time t with an additional increment of damage 
during the final dt; (3) exceeding n by 1 at t followed by a single increment 
of annealing during dt; (4) other pathways involving more than one change 
during the final infinitesimal increment of time. This is called a "birth and 
death process" , since>. and /l represent, respectively, the "birth" and "death" 
of an increment of damage. 

Eq.(S.43) results in the following differential equation by re-arranging and 
taking the limit dt -t 0: 

If the initial state of damage is 0, then the initial condition is: 

The mean and variance of the damage state, at time t, are: 

E[n(t)] 

O'~ (t) 

(8.44) 

(8.45) 

(8.46) 

(8.47) 

Eq.(8.46) indicates that the average damage progresses like the mean of a 
Poisson process whose rate parameter is >. - /l. That is, the mean damage 
state expresses the competition between damage and annealing. On the other 
hand, the variance of the damage grows like that of a Poisson process whose 
rate parameter is >. + /l, indicating that uncertainty in the damage state 
increases in time due to uncertainty in both the damage process and the 
annealing process. 
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Using the method of generating functions one can derive the probability 
distribution. For the initial conditions of eq.(8.45) one finds: 

1 
e-(),+J.£)t ~ (At)k (Jlt)k-n 

L.. k! (k-n)! 
p. ( ) k=n 

n t = 00 ( k ( k+n 
e-(),+J.£)t '""' ~ At) 

k~n k! (k + n)! 

8.4.2 Damage and Annealing: I 

n2:0 

(8.48) 

n<O 

The birth and death process must be extended in order to develop a plausible 
representation of damage and annealing in fatigue failure. Nonetheless it does 
provide a rough first approximation, as we will now see. 

Consider a one-dimensional damped vibratingsystem, eq.(8.21), driven. 
by uncertain inputs from the Fourier ellipsoid-bound convex model, eq.(8.26). 
Inputs can have either of two impacts on the system: damage or annealing. 
For instance, small loads may result in micro-cracking, while large loads cause 
repair due to local plastic deformation. We have no probabilistic information 
about the input functions u(t) except that A dt and Jl dt are the probabilities 
of damage and annealing, respectively, and that the distribution in time of 
the damage and annealing events is described by the birth and death process. 

We measure the damage and annealing in units of energy. The damage 
increments resulting from a single load cycle are uncertain, and vary between 
zero and the maximum value of E max , eq.(8.30). On the other hand, we 
suppose that the annealing increments are all of maximal magnitude and 
negative sign to indicate their annealing effect: - Emax. 

Failure occurs when the total net damage level exceeds Ecr . This is pos
sible with an excess n of damaging over annealing events, if the uncertainty 
parameter satisfies eq.(8.32). Consequently, the critical value of 0: for failure 
at net damage level n is again given precisely by eq.(8.33). Randomizing on 
the positive values of n we obtain the hybrid probabilistic-robust reliability 
for lifetime 0 as: 

00 

L O:nPn(0) 
n=l (8.49) 0:= 00 

LPn(0) 
n=l 

where the distribution Pn is given by eq.(8.48), the solution of the birth and 
death process. 

8.4.3 Damage and Annealing: II 

We now consider a modification of the basic birth and death process, which 
generates a somewhat more realistic representation of damage and annealing. 
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Consider the evolution of damage in a dynamic system to which two types 
of events are occurring in parallel. One type of event causes damage, while 
the other has an annealing effect which ameliorates the damage. 

Let >.. dt and j.t dt be the probabilities for these events to occur in an 
infinitesimal duration dt. Let e and m represent the number of occurrences of 
these two types of events, respectively, and denote the probability of damage 
state (e, m) at time t by PlmCt). 

We can derive a differential equation for Plm(t) following an argument 
similar to the derivation of eq.(8.44). The probability-balance equation for 
this process is: 

Plm(t + dt) = (8.50) 

Plm (t)[I- >..dt - j.tdtJ + Pl-1,m(t).dt + Pt,m-l(t)j.tdt + O(dt2 ) + ... 

This results in the following differential equation: 

(8.51 ) 

for £ = 0, 1, 2, ... and m = 0, 1, 2, .... We will consider the following initial 
conditions: 

Ptm(O) = OtoOmO 

for which the solution of eq.(8.51) is: 

(8.52) 

(8.53) 

We note that this is simply the product of two Poisson distributions, eq.(8.4). 
Again consider the damped one-dimensional vibrator, eq.(8.21), driven by 

inputs from either of two convex models, one representing damage events and 
the other annealing events. Both uncertainty models are Fourier ellipsoid
bound sets. The uncertainty in the Fourier coefficient vector of the damaging 
inputs is represented by: 

(8.54) 

Similarly, the uncertain annealing events are: 

(8.55) 

W>, and WI' are both real symmetric positive definite matrices. 
Damage and annealing are both energetically controlled, and failure oc

curs when the cumulative energy level exceeds Ecr . Let E>, and E,.. denote 
the energy of damage and annealing, respectIvely, deposited in the system 
during a single load cycle. To keep track of the opposite effect of damage 
and annealing we treat E>, as positive and E,.. as negative. 
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Due to the uncertainty in the input, u(t), these energies each vary on an 
interval, whose limits are determined by the same method used to arrive at 
eq.(8.31): 

o~ E>. ~ cal V>. ,max (8.56) 

2 
-ca/JvJl,max ~ E/J ~O (8.57) 

where: 

v>',max max elg [W;1/2 ZW;1/2] (8.S8) 

v/J,max max eig [W; 1/2 ZW; 1/2 ] (8.59) 

The system fails when the cumulative damage energy exceeds Ecr . Failure 
can be reached after R damage cycles and m annealing cycles if the uncertainty 
parameters satisfy: 

- cma~v/J,max + cialv>.,max ~ Ecr (8.60) 

For fixed uncertainty in the annealing process, the critical value of the damage 
uncertainty a)" for damage state (R, m), is obtained from (8.60) as: 

a)',lrn = 
Ecr + cma~v/J,max 

civ>.,max 
(8.61) 

Likewise, when the damage uncertainty is fixed, the critical uncertainty in 
the annealing process is: 

a/J,lrn = 
cmv/J,max 

(8.62) 

Finally, to get a global measure of reliability we treat a>. and a/J as a single 
uncertainty parameter, a, whose critical value becomes: 

c(Rv>.,max - mV/J,max) 
(8.63) 

For each of these three expressions for robustness, eqs.(8.61)-(8.63), we 
can formulate an average robust n!liability for lifetime 8, randomized on 
the distribution Plrn (8). Consider first the damage reliability, with fixed 
uncertainty in the annealing process. Failure can occur after one or more 
damage events, with no constraint on the number of annealings which have 
taken place. We randomize on £ > 0 and m ~ 0 to obtain: 

(8.64) 
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Using eq.(8.62) we randomize the robust reliability of the annealing pro
cess with fixed damage uncertainty. The numerator in eq.(8.62) can be neg
ative, so let 1'min be the least value of £ for which D:/J,lm takes a real value. 
Then the nndomized robust reliability is: 

(8.65) 

Finally, an expression for the overall randomized robust reliability is ob
tained with eq.(8.63). We must sum over all values of £ and m for which the 
denominator in eq.(8.63) is positive: 

L D:lm Plm (0) 
a= _t,~m ________ __ 

L Plm(0) 

(8.66) 

t,m 

8.5 Problems 

1. Poisson probability and failure. The solid propellant of a rocket is cast 
as a cylinder of length L and radius R, with a central bore of radius T. 

Cracks on the inner surface cause accelerated burning of the fuel. The 
presence of even one crack makes the unit unsafe. The procedure by 
which the central bore is produced results in A cracks per unit area, on 
the average. (a) From a large sample of such items, what fraction are 
unusable? What assumptions have you made? (b) Given a single item 
chosen randomly from a large batch, what is the probability that it is 
usable? (c) From a large sample of items, all items having two or more 
cracks on the inner surface have been removed. What is the probability 
that an item chosen from the remaining population will be usable? 

2. t Modification of problem 1. We now consider cracks in the volume 
of the propellant, and not only on the inner surface of the bore. The 
average crack density is J-l per cm3 . Furthermore, deep cracks are less 
dangerous than cracks near the bore surface, since combustion pro
ceeds from the bore surface outwards, and thus meets deep cracks later 
than shallow ones. We have probabilistic information about the failure 
probability of the propellant, as a function of crack depth. Divide the 
fuel cylinder into M concentric shells with radii T = TO < T1 < ... < 
TM -1 < TM = R. The probability of failure given one or more cracks 
in the ith bin, (from Ti-l to Ti), is Pi. What is the overall probability 
of failure of the propellant? What assumptions have you made? 
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3. Uncertain loads and cumulative damage. Consider the damped oscil
lator of eq.(8.21) driven by inputs from a cumulative energy-bound 
convex model: 

U(a) = {U(t): foT [u(t) - u(t))2 dt:::; a2} (8.67) 

The inputs occur as isolated random events distributed in time as a 
Poisson process. Each load cycle is of duration T and results in damage, 
0, to the system which is determined by the maximum deflection during 
the cycle: 

0= 11 [max x(t)] v 
09~T 

(8.68) 

"., and v are known constants. The system fails when the cumulative 
damage exceeds the critical value ~cr. (a)-· Derive an expression for 
the maximum damage, omax, possible in a single load cycle. (b) Derive 
an expression for an: the robust reliability for failure in n load cycles. 
(c) The system is considered to fail if the cumulative damage exceeds 
the critical value Llcr in a duration 0. Randomize an on the Poisson 
distribution to obtain an average robust reliability. 

4. t Uncertain loads. Consider the damped oscillator of eq.(8.21) driven by 
inputs from the convex model of eq.(8.26). The inputs occur as isolated 
random events distributed in time as a Poisson process. (a) For fixed 
uncertainty, a, derive an expression for the least number, Ncr, of load 
cycles to failure. (b) Let Pr(0) be the probability offailure in time 0, 
and let Pn (0) be the Poisson distribution. Prove that: 

00 

(8.69) 
n=Ncr 

(c) Use this relation to derive an approximate robust reliability of the 
system. 

5. Shell imperfections. Consider a thin-walled shell with band-limited 
imperfection profiles ".,(r) = IJT I(r) where I(r) is a known vector of 
trigonometric functions and f3 is an vector of uncertain Fourier coeffi
cients constrained to an ellipsoid: 

(8.70) 

The spatial distribution of imperfections is described by the Poisson 
model, and the shell fails if the total imperfection amplitude exceeds 
~cr' Develop a hybrid robust-probabilistic measure of the reliability of 
the shell. 
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6. Modification of problem 5. Replace the failure criterion by the following. 
The shell will fail with n imperfections if: 

(8.71) 

Develop a hybrid robust-probabilistic measure of reliability. 
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Last But Not Final 

We begin this chapter with a brief recapitulation of robust reliability, after 
which we address several remaining issues whose nature requires a somewhat 
more speculative approach than that adopted in previous chapters. 

9.1 Recapitulation of Robust Reliability 

We can rationally rely on something to the extent that our confidence is re
enforced by experience. In assessing reliability, we accumulate and evaluate 
information to dispell our uncertainty concerning the processes involved. This 
is the ordinary English meaning of reliability, and it underlies the technical 
meaning of reliability of engineering systems. 

We evaluate the reliability of a mechanical system for various purposes: to 
determine the degree of safety of the system, or to estimate its lifetime, or to 
improve its design, or to enhance its quality. In order to exploit the quantita
tive tools of engineering analysis, we need a quantitative theory of reliability. 
That is, the intuitive lexical concept of reliability must be translated into 
a mathematical theory. This can be done in different ways. The classical 
theory of reliability is based on mathematical probability, and is exceedingly 
useful in those situations where we have sufficient information to verify the 
assumptions involved. In this book we have developed a theory of reliability 
based on convex-set models of uncertainty. Other reliability theories are also 
conceivable. In addition, one can combine these theories in various ways, 
such as the hybrid robust-probabilistic analysis discussed in chapter 8. 

Robust reliability, based on convex models of uncertainty, measures relia
bilityas the greatest amount of uncertainty which is consistent with no-failure 
of the system. A system is considered to be reliable if it is robust with respect 
to uncertainties in its constitution and operating environment. Conversely, 
if the system is fragile with respect to these uncertainties, if small deviations 
from nominal conditions can lead to failure, then the system is not reliable. 
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The uncertainty parameters of the convex models measure the robust relia
bility of the system. 

The usual application of reliability analysis is in performance-evaluation 
of phyrical systems. However, the method of robust reliability can also be 
applied to mathematical models of mechanical systems. A model is reliable 
if the decisions which are based on the model are robust with respect to the 
uncertainties involved. Similarly, we can evaluate the reliability of algorithms 
for fault diagnosis or system identification in terms of their robustness to 
uncertain t y. 

Finally, a reliability theory is only as good as the information upon which 
it rests. A reliability theory should exploit all relevant verified information, 
but should treat speculative information and "reasonable assumptions" with 
caution. The convex models which underlie robust reliability are generally 
based on very fragmentary information. Convex models quantify uncertainty 
in terms of how events aggregate into clusters. Rougilly speaking, this is usu
ally less informative than a probabilistic model, which expresses uncertainty 
in terms of frequency of recurrence of events. When verified probabilistic 
information is available, it should be exploited. In designing and evaluating 
complex technological systems, especially under the severe time constraints 
which often dominate the industrial environment, prior information about 
uncertainties is often fragmentary. This is a major motivation for the use 
of convex rather than probabilistic models. However, some types of proba
bilistic information often is accessible, and can be incorporated into a hybrid 
probabilistic-robust reliability analysis. 

In the remainder of this chapter we will discuss several open questions. In 
section 9.2 we examine the problem of calibrating the reliability: how reliable 
is reliable enough? In section 9.3 we consider the relation between reliability 
and the social acceptability of technological systems. Finally, in section 9.4 
we discuss some managerial aspects of reliability. 

9.2 Subjective Calibration of Robust 
Reliability 

The robust reliability, ii, is measured as the greatest amount of uncertainty 
consistent with no-failure. ii depends on the physical properties and design 
parameters of the system, and may vary in time as well. When ii is large 
the system is robust to uncertainty, meaning that even substantial deviations 
from nominal conditions will not result in failure. On the other hand, when 
ii is small the system is fragile and small variations entail the possibility of 
failure. The system is reliable when ii is large; unreliable when ii is small. 

But how large is large enough? 
There is no unique answer to this question. We will discuss two ap

proaches, one based on evaluating the reliability in terms of the severity of 
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failure-consequences, the other based on the magnitude of the information
gap which underlies the uncertainty. 

9.2.1 Calibration by Consequence Severity 

There are two aspects to the question of how large a value of a is required. 
First we can ask: what is the relation between the magnitude of a and the 
safety or acceptability of the system? How do we interpret the value of a 
in terms of human experience and expectations? Once one establishes the 
connection between the parameter a and subjective performance:attributes 
such as safety and acceptability, the second question to ask is: how safe is safe 
enough? Both of these questions are exceedingly difficult since the attributes 
in question, safety and acceptability, remain qualitative. 

Concerning the first question, it is clear that "more is better" in reliability: 
safety and acceptability increase with a. ThiS implies that a is a quantitative 
tool for determining that Qne design is better than anotIier. To go farther than 
this and to establish how much better one design is than another, it will be 
helpful to consider the severity of the consequences of failure. 

We will focus the discussion on a simple example. Consider a critical rivet 
holding together two flanges and subjected to uncertain dynamic loads. As 
usual, the reliability analysis is based on three components: 

1. A mechanical model describing the response of the rivet to the loads. 
This model includes various design parameters of the rivet. We will 
consider the dependence of the reliability on the diameter, D, of the 
rivet. 

2. A convex model U(a:) describing the uncertainty of the load profiles, 
where the uncertainty parameter a: assesses the degree of variability of 
the load functions. 

3. A failure criterion. We will define failure to occur when the tensile 
stress in the rivet equals or exceeds the yield-point stress: 

(9.1) 

For any choice of the rivet diameter D, the robust reliability, a, is the 
greatest value of the load-uncertainty parameter a: for which failure just be
comes possible. When we wish to emphasize that the reliability depends on 
the choice of the design parameter we will write a(D). 

The reliability will improve as the rivet diameter increases, as in fig. 9.1, 
since the applied loads are distributed over a greater cross-sectional area 
resulting in lower tensile stress. Clearly, a large rivet is more acceptable 
than a small rivet, but by how much? This is related to the global issue we 
are considering: how large a value of a is large enough? The first question 
mentioned above is: what connection can we make between the value of a 
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Rivet diameter, D 

Figure 9.1: Variation of the reliability with rivet diameter. 

and the safety and acceptability of the rivet? That is, how do we calibrate 
& in terms of subjective performance expectations? The second question is: 
how much safety should we require? 

One way to calibrate the robustness & in terms of subjective performance 
expectations is to compare the reliability based on failure criteria of different 
severities. We will explain this by continuing the rivet example. 

Criterion (9.1) is not the only option for defining failure of the rivet. 
One could choose a failure criterion which is either more or less conservative, 
corresponding to failure consequences which are either less or more severe: 
a less severe definition of failure results in a more conservative reliability 
analysis. For any choice of the failure criterion, the robust reliability, &, is 
the greatest value of a for which failure just becomes possible. Let us consider 
three different criteria of failure, of increasing severity. We will then discuss 
the meaning of the corresponding robust measures of reliability, and their 
implication for interpreting the results in fig. 9.1 of the original reliability 
design analysis. 

In all three criteria, failure is defined to occur when the tensile stress in 
the rivet exceeds a critical value: 

(f 2: (fer (9.2) 

Our three failure criteria are distinguished by the value of the critical 
stress: 

1. Low severity. Failure is defined to occur when the stress reaches one
third of the yield-point stress: 

(9.3) 

This is a conservative definition of failure, indicating that stresses are 
occurring which can, in the course of time, result in fatigue, micro
cracking, corrosion and other mechanisms of gradual damage evolution. 



www.manaraa.com

A 
a 

low 

9.2 CALIBRATION OF ROBUST RELIABILITY 

medium high 

Figure 9.2: Robust reliability versus severity. 

209 

(Severity) 

(Failure 
criterion) 

The consequences of failure in this definition are mild, indicating the 
need for maintenance or inspection. 

2. Medium severity. Failure is defined to occur at the yield point: 

U er = U yp (9.4) 

The consequences of failure with this definition are more severe: large 
plastic deflection is possible under such large loads. This is the failure 
criterion of the original analysis, relation (9.1). 

3. High severity. Failure occurs at the ultimate tensile strength of the 
material, and results in rupture of the rivet: 

U er = Uuts (9.5) 

This is the least conservative failure criterion, since failure is defined as 
severe catastrophe. 

Each one of these failure criteria generates a corresponding robust relia
bility, which we denote alow , amed and ahi for criteria (9.3), (9.4) and (9.5) 
respectively. The most conservative faIlure-criterion, eq.(9.3), generates the 
lowest measure of reliability, since "failure" occurs most easily. The high
severity criterion is associated with the greatest value of a: catastrophe will 
occur only after large load deviations. Consequently, the magnitudes of these 
reliabiIities will be ranked as: 

(9.6) 

We can in fact imagine a continuum of failure criteria from low to high 
severity, with a continuum of robustness, increasing as in fig. 9.2. 
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Figure 9.3: Overlay of figs. 9.1 and 9.2, giving .all_indication of the sub-. 
jective advantage of different designs in terms of the severity of the failure 
consequences. 

Before proceeding, we need to point out a common pitfall. We have said 
that large a is better than small a, but in fig. 9.2 the reverse is the case: the 
unacceptable high-severity situation has the greatest value of a. In fig. 9.2 we 
are comparing the robustnesses for different failure criteria. The assertion 
that "big is better" for a holds when comparing different system designs with 
identical failure criteria. 

Now let us overlay figs. 9.1 and 9.2, as shown in 9.3. The solid line 
shows the variation of robustness versus consequence-severity, and the dashed 
line shows the .variation with rivet diameter. The solid line is calculated 
for constant diameter D1 , and the dashed line is based on the medium
severity failure criterion, eq. (9.4). These two curves intersect at D = Dl 
and Uer = uyp . 

Rivet-diameter D2 is more reliable than D1. Fig. 9.3 gives us some in
dication of how much more reliable, in terms of subjective performance ex
pectations. With diameter D2, the rivet can tolerate, without experiencing 
medium-severity failure, an amount.of load-uncertainty corresponding to the 
catastrophic failure criterion and diameter D1 . Diameter D2 is subjectively 
much more reliable than D1• Going in the reverse direction and comparing 
Dl against Do, we see that Do can tolerate, without medium-severity failure, 
an uncertainty consistent with low-severity failure and diameter D1 . In other 
words, Do is much less reliable, and hence much less acceptable, than D1• 

So how large an a is large enough? We must now consider the second 
question posed on p.207: how much safety do we require? This is not an en
gineering judgement, but rather a matter of personal and social perference. 
The engineering designer may be called upon to fulfil a variety of functions re-
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lating to the determination of acceptable design standards. He may be asked 
to identify available design options and to analyze their reliability. He may 
need to assess social and economic impacts of the various options. Finally, 
the engineer can and should make his own subjective safety assessment as an 
individual. We will have more to say about this in section 9.3. But ultimately, 
the subjective evaluation of safety and acceptability remains precisely that: 
subjective. 

Let us conclude this discussion with a comparison between probabilis
tic and robust reliability. The usual probabilistic measure of reliability is 
the probability of no-failure, Pnr . This probability is normalized to a max- ' 
imum value of unity. Consequently, one has an intuitive understanding of 
the meaning of values near zero or near unity, even without reference to any 
particular system. Probability of no-failure near zero is clearly unacceptable, 
while values near unity are highly desirable. The uncertainty parameter of 
a convex model, 0:, is non-negative and unbounded, apd we understand that 
uncertainty increases with a. Similarly the robust reliabllity index a can take 
any non-negative value, indicating the amount of tolerable uncertainty. Also, 
reliability increases with a. Finally, using an analysis like that summarized 
in fig. 9.3 we can subjectively "calibrate" our understanding of the numerical 
value of a. We thus can acquire an intuitive interpretation of any particular 
numerical value of a. 

However, in both the probabilistic and the robust theories, this intuitive 
feeling for the meaning of either Pnr or a is not as fundamental as it seems at 
first, since it does not indicate what values of either Pnr or a are acceptable. 
We may accept a probability of catastrophic failure in automobiles of 0.0001 
per year, while in the nuclear or air travel industries we may require greater 
probabilistic reliability. In other words, the intuitive interpretation of either 
Pnr or a does not determine a criterion for acceptability. In both cases, only 
reference to considerations outside the reliability theory leads to acceptance 
or rejection of a given level of reliability. In this respect, probabilistic and ro
bust reliabilities are identical: we must consult personal or public experience 
and preference in order to determine the design-goal values of the reliability, 
whether Pnf or a. 

9.2.2 Calibration by the Information Gap 

We have shown in the previous section how to develop a subjective calibration 
of robust reliability by establishing a connection between values of a for 
different designs, and values of a for failure criteria of different severities. 
This i~ calibration in terms of consequence-severity. Now we perform a similar 
analysis, in which the subjective ranking of consequences is replaced by a 
subjective ranking of the amount of initial information. Instead of comparing 
different failure criteria, we compare different families of convex models. We 
will assess the robust reliability of various designs in terms of a subjective 
assessment of the initial information gap. This provides a different subjective 
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Figure 9.4: Envelope functions for low- medium- and high-information-gap 
convex models. 

answer to the question on p.207: how much more reliable is one design than 
another? 

We continue with the rivet example discussed in section 9.2.1, but no~ 
we concentrate on the convex uncertainty models of the unknown scalar load 
profile u(t). We will consider three envelope-bound convex models, which 
we rank as low, medium and high, according to the extent of their inherent 
uncertainty. All three convex models are of the form: 

Ui.g.(a) = {u(t): lu(t)l:S: atPi.g.(t)} , i.g. = low, med, hi (9.7) 

The envelope functions tPi.g. for the low- medium- and high-information-gap 
models are non-negative functions ranked as: 

(9.8) 

for all values of t. Typical envelope functions are shown in fig. 9.4. For 
the same value of uncertainty parameter a, envelope tPhi implies the least 
constraint on the input and hence the greatest lack of prior information about 
the inputs which can occur, while tPlow represents the tightest constraint on 
the input and the lowest information gap. The uncertainty parameters of all 
three convex models have the same units: those of the load function u(t). 

The uncertainty model Ulow(a) establishes a very "tight" definition of 
the input uncertainty, implying a small disparity between what is known 
about the input and what could be known: this is a small information gap. 
The intermediate convex model, Umed(a), is somewhat less specific and has 
a greater information-gap for the same value of the uncertainty parameter. 
Finally, the third model, Uhi(a), is the least specific, based on the loosest 
constraint on the inputs. 

Let us suppose that the axial vibration of the rivet is linearly elastic. 
Consequently, for zero initial deflection and velocity of the rivet, the normal 
stress in the rivet in response to a load function u(t), is described by: 

O"u(t) = lt U(T)Z(t - T) dT (9.9) 
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Low Medium high (info gap) 

Figure 9.5: Robust reliability versus information gap. 

where z(t) is a known function depending on the properties of the rivet, 
in particular on the diameter D. The stress will decrease with increasing 
diameter, for the same load. 

The rivet fails ifthe axial stress exceeds a critical value Uer. as in eq.(9.2). 
The greatest axial stress in the rivet, for any load profile in a particular convex 
model Ui.g.(a), occurs when u(r) follows the envelope, tPi.g.(r), switching 
between the upper and lower branches as z(t - r) changes sign: 

tri.g.(t) = max uu(t) 
UEULg.(a) 

= a lot tPi.g.(r)lz(t-r)ldr 

(9.10) 

(9.11) 

for i.g. = low, med, hi. In light of the ranking of the envelope functions in 
relation (9.8), the maximum stresses for each of the three convex models are 
similarly ranked, for fixed rivet diameter: 

(9.12) 

The robust reliability for each convex model can be expressed by equating 
tri.g. to the critical stress and then solving for a: 

~ Uer 
ai.g. = t 

fo tPi.g.(r)lz(t - r)1 dr 
(9.13) 

From relations (9.12) and (9.13) one sees that the reliabilities for the three 
convex models are ranked in reverse order: 

(9.14) 

This ranking of course is for a given value of the rivet diameter. We can 
imagine a continuum of convex models, whose information-gaps vary from 
low to high. The reliabilities corresponding to these uncertainty models will 
also decrease continuously, as shown in fig. 9.5. 
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Figure 9.7: Overlay of figs. 9.5 and 9.6, giving an indication of the subjective 
advantage of different designs in terms of the information gap inherent in the 
convex model. 

But of course if we consider only a particular level of uncertainty, for 
instance Umed(O:), and vary the rivet diameter, then the reliability will vary 
like fig. 9.6. The basic question is: how much does the subjective reliability 
vary over this range of designs? 

To assess this in terms of the initial information gap, we overlay figs. 9.5 
and 9.6, as in fig. 9.7. The rising dashed line is the robust reliability as a 
function of rivet diameter, evaluated with U med (0:), the medium-information
gap model of uncertainty. The decreasing solid line is the reliability of rivet 
size D 1 , as a function of the subjective magnitude of the information gap. 
These curves cross exactly at diameter Dl and medium info-gap size. 

Diameter D2 is substantially more reliable than size D1 , as we see by com
paring points A and A' in fig. 9.7. Diameter D2 and the medium-gap model 
can tolerate, without experiencing failure, an amount of load-uncertainty cor-
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responding to the low-info-gap uncertainty model and diameter D1 . In other 
words, increasing the diameter from Dl to D2 enhances the reliability in a 
way which is in some sense equivalent to reducing the load-uncertainty from 
the medium- to the low-information-gap level. The difference between design 
values Dl and D2 is in this sense subjectively equivalent to the difference 
between the medium- and low-gap uncertainty models. Conversely, diameter 
Do is much less reliable than D1 , as seen from points B and B'. Diameter Do 
and the medium-gap uncertainty model can tolerate, without failure, only as 
much uncertainty as Dl and the high-gap model. 

The qualitative calibrations of Ii discussed in this section and the pre
vious one provide alternative assessments of the degree of reliability. These 
assessments, being subjective, need not be entirely consistent with one an
other. They represent different aspects of the difficult problem of correlating 
numbers with anticipations and expectations. 

9.3 Reliability and Social Acceptability 

The reliability of technological constructions is one of the oldest concerns 
of civilization. Forty centuries ago Hammurabi decreed the following severe 
penalties for structural failure: 

If a mason has built a house for a man, but (if) he has not consol
idated his work and (if) the house he has built falls down causing 
the death of the owner of the house, this mason shall be killed. 
If he causes the death of the child of the owner of this house, the 
mason's child shall be killed. (Articles 229-230) 

Reliability, as an aspect of human affairs and an issue in society, goes be
yond the scope of quantitative analyses like the one developed in this book. 
Sociai priorities, subjective evaluation of risks, economic constraints, envi
ronmental impact, hidden costs and delayed effects, unpredictable even un
quantifiable human behavior: all are relevant to objective as well as perceived 
reliability. 

When the engineer evaluates his invention or design in the context of 
social implications and issues, he faces a confusing kaleidoscope of concerns. 
The engineer may view his technological system as residing at the hub of 
a merry-go-round of supra-technological complexities (fig. 9.8). His formal 
professional competence is constrained to the technical system itself, but at 
least part of his effort must be directed outside the immediate domain of 
technology. Cognizance of social expectations can profoundly influence his 
professional decisions. Just ask any mason from Hammurabi's time! 

So, must the responsible engineer, concerned about the social acceptabil
ity of his product as well as about his own well-being, be an economist, 
ecologist, psychologist, moralist and lawyer, all in one? No, but of course 
also yes. The engineer has multi-faceted responsibilities which transcend 
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Figure 9.8: Social issues in technologicar reliability. 

his purely technical function. One result is that many engineering ventures 
involve teamwork often on a grand scale, between specialists of many disci
plines, scientific, technical and social. 

But as issues get more complex and interwoven, as suggested in fig. 9.8, 
the advantages of the expert begin to fade, and not all responsibility can be 
relegated to topical specialists. Each member of the team must contribute 
to achieving social acceptability for the system being developed, designed, 
constructed, tested, marketed, serviced or repaired. Each member of the 
team must identify the uncertainties which accompany the mission, though 
often these are not quantifiable with mathematical models. One must identify 
the information gap between what is known and what could be known. It is 
a highly speculative, subjective and tenuous task, but one must attempt to 
enhance the robustness of the mission to these uncertainties. This speculative 
reliability is far more difficult to achieve, or even to detect once it has been 
achieved, than the quantitative technical reliability we have studied in this 
book. But nonetheless, in applying the technical concepts of reliability, the 
engineer should recognize his involvement in the broader goal of achieving 
social acceptability for his product .. 

9.4 Robustness as a Managerial Strategy 

Robustness to uncertainty has been recognized as a guiding principle for reli
able management with deficient information. Laufer identifies nine principles 
for "managing projects in an era of uncertainty". He writes that one central 
principle in project management is that, "in dynamic conditions, influencing 
the future is not just making decisions early. It is more about the ability to 
reduce uncertainty and to minimize the impact of surprises." (empha-
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sis in the original) [57]. This is a direct statement of the need for robustness 
to uncertainty. 

One implication is that technical product-reliability should be highlighted 
on the managerial agenda. Unanticipated technical failures can lead to the 
most unpleasant surprises. The O-ring failure during the Challenger launch 
of 1985 is a prime example. A single component was given minor attention 
by the engineers because of its technical simplicity and universality. Its fail
ure however led to catastrophic termination of the mission when the entire 
space vehicle exploded shortly after launch. For the project manager, re
ducing uncertainty and minimizing the impact of surprises can mean, among 
other things, enhancing the robust reliability of components and systems. In 
complex integrated engineering projects, this must be a central concern of 
the managerial as well as of the technical staff. 

Managers are often engineers, having begun their careers in a specific 
technical discipline. This can facilitate the manager~s _ability to communi
cate effecti~ely with the engineering staff in coordinating the management of 
reliability. Engineers, on the other hand, may have limited managerial ex
perience. Since communication is a two-way street, problems can develop in 
establishing effective overall control of system-wide reliability. In the training 
of engineers, both at the university and in industry, it is important to enhance 
the systems-consciousness of the engineer, to strengthen his awareness of the 
interconnections among physical sub-units and between temporal stages of 
the project. For example, the engineer as well as the manager must be aware 
that decisions made by the designer at the conceptual stage can have pro
found impact on the actions and options of the maintenance engineer much 
later in the life of the product. In short, robustness is a useful concept for 
the management of uncertainty in complex projects and, conversely, the in
tegrative perspective of the project manager is at times relevant to specific 
technical decisions. 
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